Space

March 10, 2014

Orbital introduces the GEOStar-3 commercial communications satellite platform

Orbital Sciences Corporation, one of the world’s leading space technology companies, March 10 introduced its GEOStar-3TM satellite platform, stating the program is now ready for delivery to commercial satellite operators on production schedules of 24 to 27 months. 

The medium-class GEOStar-3 platform is an extension of Orbital’s highly successful small-class GEOStar-2 bus that has led its market niche for the past decade.

This evolutionary technology upgrade represents an incremental expansion of the company’s flight-proven, low-risk product line, based on a standard platform with configure-to-order payload flexibility to maximize customer value for fixed satellite services, direct to home and high throughput satellite applications.

“The enhanced capacity, flexibility and scalability of the GEOStar-3 platform enables us to address the requirements of the medium-size satellite market, offering customers more payload power, higher throughput and better overall value,” said Christopher Richmond, Orbital’s senior vice president of its Communications Satellite business unit.  “This product expands Orbital’s addressable market, while improving our reliability and delivery schedules to customers around the world, including the high-growth, high-throughput satellite segment.”

The GEOStar-3 platform incorporates key enhancements that evolved from the GEOStar-2 bus, including an upgraded electrical power system that boosts payload power capability from 5 kilowatts up to 8 kilowatts and a physically larger bus allowing the vehicle to support communications payloads weighing up to 800 kilograms.

The company is currently under contract to deliver the first GEOStar-3 in early 2016 and is in active negotiations with several other customers for additional orders, including for its new hybrid electric propulsion platform option.  The hybrid GEOStar-3 design uses traditional chemical propulsion to reach orbit in a matter of days, not months like a full EP satellite, and then performs station-keeping operations for 15 years or more with EP, resulting in an optimum mass-efficient system.

Orbital also designed the GEOStar-3 platform to enable dual-launch configurations.  The ability to stack two GEOStar satellites on a single launch vehicle significantly reduces the overall system cost and provides the widest array of launch options possible, a key benefit of the GEOStar-3 platform to Orbital’s customers.

The GEOStar-3 satellite will continue Orbital’s tradition of industry-leading short-cycle delivery schedules.  The company’s small-class GEOStar-2 spacecraft are regularly delivered in 22 to 24 months and the company expects to deliver the medium-class GEOStar-3 spacecraft in 24 to 27 months.  Like the GEOStar-2 satellite, the GEOStar-3 platform is designed for a service life of at least 15 years.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 15, 2014

News: Navy identifies pilot presumed dead in crash - A Navy fighter pilot presumed dead after two fighter jets crashed in the far western Pacific Ocean has been identified.   Business: Boeing eyes 737-700 solution for new JSTARS - Boeing is officially planning a variant of its 737-700 commercial jetliner as a competitor for the Air Force’s...
 
 

News Briefs September 15, 2014

Australia contributing planes for anti-IS campaign Australia is preparing to contribute 600 troops and up to 10 military aircraft to the increasingly aggressive campaign against the Islamic State extremists in Syria and Iraq, Prime Minister Tony Abbott said Sept. 14. Abbott said Australia was responding to a formal request from the United States for specific...
 
 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 

 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 
 
Image courtesy of NASA/JPL-Caltech/Univ. of Arizona

NASA’s Mars Curiosity rover arrives at Martian mountain

NASA’s Mars Curiosity rover has reached the Red Planet’s Mount Sharp, a Mount-Rainier-size mountain at the center of the vast Gale Crater and the rover mission’s long-term prime destination. “Curiosity n...
 
 

Raytheon begins full rate production on TALON Laser Guided Rockets

Under a $117 million contract awarded to Raytheon, Raytheon Missile Systems has begun production of the TALON Laser Guided Rocket. In 2013, the Armed Forces General Headquarters of the United Arab Emirates awarded Tawazun a contract to procure the TALON Laser Guided Rocket. “Full rate production of the TALON LGR is a significant milestone for...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>