Space

March 10, 2014

Orbital introduces the GEOStar-3 commercial communications satellite platform

Orbital Sciences Corporation, one of the world’s leading space technology companies, March 10 introduced its GEOStar-3TM satellite platform, stating the program is now ready for delivery to commercial satellite operators on production schedules of 24 to 27 months. 

The medium-class GEOStar-3 platform is an extension of Orbital’s highly successful small-class GEOStar-2 bus that has led its market niche for the past decade.

This evolutionary technology upgrade represents an incremental expansion of the company’s flight-proven, low-risk product line, based on a standard platform with configure-to-order payload flexibility to maximize customer value for fixed satellite services, direct to home and high throughput satellite applications.

“The enhanced capacity, flexibility and scalability of the GEOStar-3 platform enables us to address the requirements of the medium-size satellite market, offering customers more payload power, higher throughput and better overall value,” said Christopher Richmond, Orbital’s senior vice president of its Communications Satellite business unit.  “This product expands Orbital’s addressable market, while improving our reliability and delivery schedules to customers around the world, including the high-growth, high-throughput satellite segment.”

The GEOStar-3 platform incorporates key enhancements that evolved from the GEOStar-2 bus, including an upgraded electrical power system that boosts payload power capability from 5 kilowatts up to 8 kilowatts and a physically larger bus allowing the vehicle to support communications payloads weighing up to 800 kilograms.

The company is currently under contract to deliver the first GEOStar-3 in early 2016 and is in active negotiations with several other customers for additional orders, including for its new hybrid electric propulsion platform option.  The hybrid GEOStar-3 design uses traditional chemical propulsion to reach orbit in a matter of days, not months like a full EP satellite, and then performs station-keeping operations for 15 years or more with EP, resulting in an optimum mass-efficient system.

Orbital also designed the GEOStar-3 platform to enable dual-launch configurations.  The ability to stack two GEOStar satellites on a single launch vehicle significantly reduces the overall system cost and provides the widest array of launch options possible, a key benefit of the GEOStar-3 platform to Orbital’s customers.

The GEOStar-3 satellite will continue Orbital’s tradition of industry-leading short-cycle delivery schedules.  The company’s small-class GEOStar-2 spacecraft are regularly delivered in 22 to 24 months and the company expects to deliver the medium-class GEOStar-3 spacecraft in 24 to 27 months.  Like the GEOStar-2 satellite, the GEOStar-3 platform is designed for a service life of at least 15 years.




All of this week's top headlines to your email every Friday.


 
 

 

Boeing concludes commercial crew space act agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket. NASA in July approved the Critical Design Review Board milestone for Boeing’...
 
 

NASA partners with leading technology innovators to enable future exploration

Recognizing that technology drives exploration, NASA has selected four teams of agency technologists for participation in the Early Career Initiative pilot program. The program encourages creativity and innovation among early career NASA technologists by engaging them in hands-on technology development opportunities needed for future missions. NASA’s Space Technology Mission Directorate c...
 
 

New commercial rocket descent data may help NASA with future Mars landings

NASA successfully captured thermal images of a SpaceX Falcon 9 rocket on its descent after it launched in September from Cape Canaveral Air Force Station, Fla. The data from these thermal images may provide critical engineering information for future missions to the surface of Mars. “Because the technologies required to land large payloads on Mars...
 

 
Image courtesy of NASA, J. Lotz, (STScI

NASA’s Hubble finds extremely distant galaxy through cosmic magnifying glass

Image courtesy of NASA, J. Lotz, (STScI The mammoth galaxy cluster Abell 2744 is so massive that its powerful gravity bends the light from galaxies far behind it, making these otherwise unseen background objects appear larger a...
 
 
NASA photograph

NASA TV to air Russian spacewalk from International Space Station

NASA photograph Expedition 41 Commander Max Suraev and Flight Engineer Alexander Samokutyaev of the Russian Federal Space Agency will don Orlan spacesuits and step outside the International Space Station Oct. 22, to perform wor...
 
 
Ball Aerospace photograph

Ball Aerospace green propellant infusion mission to host three DOD space experiments

Ball Aerospace photograph The NASA and Ball Aerospace & Technologies Corp. Green Propellant Infusion Mission (GPIM) will fly three Defense Department experimental hosted payloads when it launches in 2016. The NASA and Ball ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>