Space

March 10, 2014

Orbital introduces the GEOStar-3 commercial communications satellite platform

Orbital Sciences Corporation, one of the world’s leading space technology companies, March 10 introduced its GEOStar-3TM satellite platform, stating the program is now ready for delivery to commercial satellite operators on production schedules of 24 to 27 months. 

The medium-class GEOStar-3 platform is an extension of Orbital’s highly successful small-class GEOStar-2 bus that has led its market niche for the past decade.

This evolutionary technology upgrade represents an incremental expansion of the company’s flight-proven, low-risk product line, based on a standard platform with configure-to-order payload flexibility to maximize customer value for fixed satellite services, direct to home and high throughput satellite applications.

“The enhanced capacity, flexibility and scalability of the GEOStar-3 platform enables us to address the requirements of the medium-size satellite market, offering customers more payload power, higher throughput and better overall value,” said Christopher Richmond, Orbital’s senior vice president of its Communications Satellite business unit.  “This product expands Orbital’s addressable market, while improving our reliability and delivery schedules to customers around the world, including the high-growth, high-throughput satellite segment.”

The GEOStar-3 platform incorporates key enhancements that evolved from the GEOStar-2 bus, including an upgraded electrical power system that boosts payload power capability from 5 kilowatts up to 8 kilowatts and a physically larger bus allowing the vehicle to support communications payloads weighing up to 800 kilograms.

The company is currently under contract to deliver the first GEOStar-3 in early 2016 and is in active negotiations with several other customers for additional orders, including for its new hybrid electric propulsion platform option.  The hybrid GEOStar-3 design uses traditional chemical propulsion to reach orbit in a matter of days, not months like a full EP satellite, and then performs station-keeping operations for 15 years or more with EP, resulting in an optimum mass-efficient system.

Orbital also designed the GEOStar-3 platform to enable dual-launch configurations.  The ability to stack two GEOStar satellites on a single launch vehicle significantly reduces the overall system cost and provides the widest array of launch options possible, a key benefit of the GEOStar-3 platform to Orbital’s customers.

The GEOStar-3 satellite will continue Orbital’s tradition of industry-leading short-cycle delivery schedules.  The company’s small-class GEOStar-2 spacecraft are regularly delivered in 22 to 24 months and the company expects to deliver the medium-class GEOStar-3 spacecraft in 24 to 27 months.  Like the GEOStar-2 satellite, the GEOStar-3 platform is designed for a service life of at least 15 years.




All of this week's top headlines to your email every Friday.


 
 

 
LM-MUOS

U.S. Navy, Lockheed Martin ready to launch MUOS-4 Aug. 31

The U.S. Navy and Lockheed Martin are ready to launch the fourth Mobile User Objective System secure communications satellite, MUOS-4, from Cape Canaveral Air Force Station, Fla., Aug. 31 aboard a United Launch Alliance Atlas V...
 
 

NASA seeks proposals for extreme environment solar arrays

NASA’s space technology program is seeking proposals to develop solar array systems for space power in high radiation and low solar energy environments. In the near future, NASA will need solar cells and arrays for multiple applications in robotic and human space exploration missions. Because these systems were traditionally developed for operation near Earth, there...
 
 

NASA awards contract for construction of new mission launch command center

NASA has awarded a contract to Harkins Contracting Inc. of Salisbury, Maryland, for the construction of a new Mission Launch Command Center at the agency’s Wallops Flight Facility in Wallops Island, Va. The new 14,174 square-foot facility will serve as the hub for interfacing with and controlling rockets, their payloads and associated launch pad support...
 

 
NASA photograph

NASA concludes series of engine tests for next-gen rocket

NASA photograph The RS-25 engine fires up for a 535-second test Aug. 27, 2015 at NASA’s Stennis Space Center near Bay St. Louis, Miss. This is the final in a series of seven tests for the development engine, which will pr...
 
 
LM-satellite

Lockheed Martin makes tiny satellite cooling system

Lockheed Martin scientists are packing three times the power density into a key satellite cooling system whose previous design is already the lightest in its class. This project continues the company’s effort to reduce co...
 
 
Northrop Grumman photograph by Bob Brown

Northrop Grumman delivers telescope structure for James Webb Space Telescope

Northrop Grumman photograph by Bob Brown Northrop Grumman employees preparing the telescope structure, for NASA’s James Webb Space Telescope for shipment to Goddard Space Flight Center in Greenbelt, Md. REDONDO BEACH, Cal...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>