Tech

March 19, 2014

NASA completes this year’s flights in search of climate change clues

A team of NOAA researchers checks out the UAS Chromatograph for Atmospheric Trace Species instrument installed in NASA’s unmanned Global Hawk for the ATTREX mission.

NASA’s Global Hawk research aircraft returned to its base at NASA’s Armstrong Flight Research Center at Edwards Air Force Base, Calif., early morning March 14, marking the completion of flights in support of this year’s Airborne Tropical Tropopause Experiment, a multi-year NASA airborne science campaign.

On Feb. 13, the autonomously operated aircraft began conducting science flights from Andersen Air Force Base on Guam in the western Pacific region on a mission to track changes in the upper atmosphere and help researchers understand how these changes affect Earth’s climate.

“The western Pacific region is critical for establishing the humidity of the air entering the stratosphere,” said Eric Jensen, ATTREX principal investigator at NASA’s Ames Research Center at Moffett Field, Calif.

ATTREX measures the moisture levels and chemical composition of upper regions of the lowest layer of Earth’s atmosphere, a region where even small changes can significantly impact climate. Scientists will use the data to better understand physical processes occurring in this part of the atmosphere and help make more accurate climate predictions.

Studies show even slight changes in the chemistry and amount of water vapor in the stratosphere, the same region that is home to the ozone layer that protects life on Earth from the damaging effects of ultraviolet radiation, can affect climate significantly by absorbing thermal radiation rising from the surface. Predictions of stratospheric humidity changes are uncertain because of gaps in the understanding of the physical processes occurring in the tropical tropopause layer.

ATTREX is studying moisture and chemical composition from altitudes of 45,000 to 60,000 feet in the tropical tropopause, which is the transition layer between the troposphere, the lowest part of the atmosphere, and the stratosphere, which extends to roughly 30 miles above Earth’s surface. Scientists consider the tropical tropopause to be the gateway for water vapor, ozone and other gases that enter the stratosphere. For this mission, the Global Hawk carries instruments that will sample the tropopause near the equator over the Pacific Ocean.

ATTREX scientists installed 13 research instruments on NASA’s Global Hawk 872. Some of these instruments capture air samples while others use remote sensing to analyze clouds, temperature, water vapor, gases and solar radiation.

This year, ATTREX conducted seven long-duration science flights totaling 121 hours, averaging more than 17 hours per flight. This year’s flights bring the total hours flown in support of ATTREX to 297 hours since 2011.

Jensen and Project Manager Dave Jordan of Ames lead the ATTREX mission. It includes investigators from Ames and three other NASA facilities: Langley Research Center in Hampton, Va., Goddard Space Flight Center in Greenbelt, Md., and the Jet Propulsion Laboratory in Pasadena, Calif. The team also includes investigators from the National Oceanic and Atmospheric Administration, the National Center for Atmospheric Research, the University of California at Los Angeles, the University of Miami, the University of Heidelberg, and private industry.

ATTREX is one of the first research missions of NASA’s new Earth Venture project. These small and targeted science investigations complement NASA’s broader science research satellite missions. The Earth Venture missions are part of NASA’s Earth System Science Pathfinder Program managed by Langley.

NASA monitors Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by Tom Tschida

NASA Armstrong leads team to test effects of volcanic ash on aircraft engines

NASA photograph by Tom Tschida Volcanic ash is sprayed into one of the F117 engines of a C-17 during the final phase of the Vehicle Integrated Propulsion Research (VIPR) project July 9 at Edwards. The VIPR team, comprised of NA...
 
 
NASA photograph

NASA, partners test unmanned aircraft systems

NASA photograph NASA’s Ikhana is being used to test a system that will allow uncrewed aircraft to fly routine operations within the National Airspace System. NASA, working with government and industry partners, is testing...
 
 
NASA photograph

NASA-developed air traffic management tool flies into use

NASA photograph NASA Future Flight Central is a national Air Traffic Control/Air Traffic Management (ATC/ATM) simulation facility. The two-story facility offers a 360-degree full-scale, real-time simulation of an airport, where...
 

 
NASA photograph

Robotics teams prepare to compete for $1.5 million in NASA Challenge

NASA photograph The Los Angeles team Survey’s robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at t...
 
 

NASA invests in future of aviation with supersonic research projects

Quieter, greener supersonic travel is the focus of eight studies selected by NASAís Commercial Supersonic Technology Project to receive more than $2.3 million in funding for research that may help overcome the remaining barriers to commercial supersonic flight. The research, which will be conducted by universities and industry, will address sonic booms and high-altitude emissions...
 
 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>