Defense

March 24, 2014

Unmanned vehicle demonstration showcases leap-ahead technology

VIP’s watched the Autonomous Mobility Appliqué System demonstration from the top of a building in the BOAZ Military Operations in Urban Terrain training site at Fort Hood, Texas.

Working closely with Lockheed Martin and a conglomeration of Army technology, acquisition and user community stakeholders, the U.S. Army Tank Automotive Research Development and Engineering Center successfully demonstrated an unmanned military convoy Jan. 14 at Fort Hood, Texas.

From a rooftop in the Fort Hood training area, military and industry VIPs saw firsthand how the Autonomous Mobility Appliqué System, or AMAS, enabled two driverless Palletized Loading System prime movers and an M915 tractor trailer truck to seamlessly interact with a manned Humvee gun truck escort. The convoy negotiated oncoming traffic, followed rules of the road, recognized and avoided pedestrians and various obstacles, and then used intelligence and decision-making abilities to re-route their direction through a maze of test areas to complete both complex urban and rural line haul missions.

As the ground systems expert within the U.S. Army Research, Development and Engineering Command, TARDEC develops, integrates and sustains the right technology solutions to address ever-changing threats and shifts in strategic, technological and fiscal environments. Flexibility and adaptability are vital to future systems, and AMAS is designed to provide a wide range of military vehicle platforms with optionally-manned capabilities that will increase safety and provide the warfighter with additional flexibility.

During the Autonomous Mobility Applique’ System demo, VIP’s saw autonomous vehicles negotiate live traffic, follow the rules of the road, recognize pedestrians and avoid various obstacles in both urban and rural test areas.

“We’re not looking to replace Soldiers with robots. It’s about augmenting and increasing capability,” said Col. Chris Cross, chief of Science and Technology at the Army Capabilities Integration Center.

Equipped with GPS, Light Detecting and Ranging systems, known as LIDAR, Automotive radar, a host of sensors and other high-tech hardware and software components, the common appliqué kit’s intelligence and autonomous decision-making abilities can be installed in practically any military vehicle, transforming an ordinary vehicle into an optionally manned version.

AMAS can also keep personnel out of harm’s way and provide Soldiers on manned missions with increased situational awareness and other safety benefits. For instance, AMAS also features collision mitigation braking, lane-keeping assist and a roll-over warning system, electronic stability control and adaptive cruise control. During manned missions, these additional safety features could theoretically increase Soldier performance. The robotic mode frees up the vehicle crew to more closely watch for enemy threats, while still leaving them the option of manually taking control of the vehicle when necessary.

A soldier from 3rd Cavalry Regiment programs an autonomous convoy using the Autonomous Mobility Appliqué System.

“The AMAS hardware and software performed exactly as designed and dealt successfully with all of the real-world obstacles that a real-world convoy would encounter,” said AMAS Program Manager David Simon, with Lockheed Martin Missiles and Fire Control.

AMAS development aligns with Army goals for the Future Force. At an Association of the United States Army breakfast in Arlington, Va., Jan. 23, Army Chief of Staff Gen. Raymond Odierno talked about the Army Modernization Strategy and the difficult decisions ahead.

“What is that leap-ahead technology that we need that could make a real difference for our Soldiers on the ground?” Odierno asked. “What is the technology that allows us to decrease the weight so we can be more expeditionary? I need tactical mobility for the future. We need to move towards mobility and try to determine how we sustain survivability while increasing mobility.”

In his just-released CSA Strategic Priorities, Odierno added that we must prioritize Soldier-centered modernization and procurement of proven technologies so that Soldiers have the best weapons, equipment and protection to accomplish the mission.

Another AMAS demonstration with more vehicles and more complex notional scenarios is scheduled for later this year.

“We are very happy with the results, but the AMAS must undergo more testing before it becomes deployable,” said TARDEC AMAS Lead Engineer Bernard Theisen.

The U.S. Army Tank Automotive Research Development and Engineering Center and Lockheed Martin partnered with U.S. Central Command, Army Capabilities Integration Center, Combined Arms Support Command, and the 3rd Cavalry Regiment, to demonstrate an autonomy-enabled technology that can help distance our warfighters from dangerous threats during convoy operations. On Jan. 14, 2014, they demonstrated the Autonomous Mobility Applique’ System and conducted an autonomous convoy at Fort Hood, Texas.

“The vehicles and systems are replaceable, but nothing can replace the life of a Soldier. These systems keep Soldiers safe and make them more efficient,” he said.

TARDEC is the ground systems expert within RDECOM. It provides engineering and scientific expertise for Department of Defense manned and autonomy-enabled ground systems and ground support systems; serves as the nation’s laboratory for advanced military automotive technology; and provides leadership for the Army’s advanced Science and Technology research, demonstration, development and full life cycle engineering efforts.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 24, 2014

News: Hagel said to be stepping down as defense chief under pressure - Defense Secretary Chuck Hagel is stepping down under pressure, the first cabinet-level casualty of President Obama’s Democratic majority in the Senate and a beleaguered national security team that has struggled to stay ahead of an onslaught of global crises. Afghan mission for U.S....
 
 

News Briefs November 24, 2014

Fog forces five U.S. choppers to land in Polish field Officials say that that fog forced five U.S. Army helicopters to make an emergency landing in a Polish field and spend the night there, the second such incident since September. The U.S. Army said 15 soldiers were moving equipment to their base in Germany Nov....
 
 
Air Force photograph by Samuel King Jr.

Navy’s first F-35C squadron surpasses 1,000 flight hours

Air Force photograph by Samuel King Jr. An F-35C Lightning II aircraft piloted by Lt. Cmdr. Chris Tabert, assigned to Strike Fighter Squadron (VFA) 101, flies the squadron’s first local sortie. The F-35C is the carrier va...
 

 
boeing-SC-787

Boeing South Carolina begins final assembly of its first 787-9 Dreamliner

Boeing has started final assembly of the 787-9 Dreamliner at its South Carolina facility. The team began joining large fuselage sections of the newest 787 Nov. 22 on schedule, a proud milestone for the South Carolina team and a...
 
 
Lockheed Martin image

Ball Aerospace equips Orion mission with key avionics, antenna hardware

Lockheed Martin image Ball Aerospace & Technologies Corp. is providing the phased array antennas and flight test cameras to prime contractor Lockheed Martin for Orion’s Exploration Flight Test-1 (EFT-1), which is an u...
 
 

Salina, Kansas, recalls anniversary of shuttered base

It has been 50 years this month since the announcement that Schilling Air Force Base was closing rattled Salina residents. The Salina Journal, which carried news of the closure in its Nov. 19, 1964, editions, reported that the economic disaster then spared no part of the community – real estate, retail, civic involvement, church attendance,...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>