Tech

April 2, 2014

LVAC: Advancing technology readiness of SLS adaptive controls

NASA Armstrong’s highly modified F/A-18A Full Scale Advanced Systems Testbed aircraft No. 853 validated the effectiveness of the Adaptive Augmenting Controller developed by NASA Marshall engineers for the Space Launch System.

Can a rocket maneuver like an airplane?

And can an airplane act as a surrogate for a maneuvering rocket?

NASA engineers demonstrated just that when they used a NASA F/A-18 aircraft recently to simulate a rocket in its early flight phase to test adaptive software for NASA’s new rocket the Space Launch System (SLS), the largest, most powerful launch vehicle for deep space missions.

The tests are helping engineers working on the development of the SLS at NASAs Marshall Space Flight Center in Huntsville, Ala., ensure the rocket can adjust to the environment it faces as it makes its way to space.

Engineers reviewed the root causes of historical launch vehicle failures and found that although guidance, navigation and control systems were rarely the cause of the incidents, they discovered that advancements in this technology could result in expanded capabilities to keep the rocket on track in the face of anomalies that might occur in flight.

When NASA develops new technology for launch vehicles like Adaptive Augmenting Control, we want to test it in order to mature the technology and build our confidence in it,” said Tannen VanZwieten, NASA Marshall’s SLS flight control lead. “But in lieu of a launch vehicle flight test, we need to find creative ways to mature it through testing in a relevant environment.

“With our flight software, the SLS program at Marshall partnered with NASA’s Engineering and Safety Center, Armstrong Flight Research Center at Edwards, Calif., and the Space Technology Mission Directorate’s Game Changing Development Program to test our algorithm on a NASA F/A-18 airplane, added VanZwieten.

Project engineers Stephanie Andrade from NASA Armstrong, Eric Gilligan and Tannen VanZwieten from NASA Marshall monitor LVAC flight data in a mission control room at NASA Armstrong.

An early version of an adaptive control system was used on the last X-15 rocket plane that was built in the 1960s. As the X-15 reached thinning atmosphere at the edge of space, the adaptive control system automatically responded to the changing conditions by increasing the responsiveness of the control surfaces to commands.

An adaptive control system is any type of control system that changes its parameters in flight to adjust to information that it learns about the vehicle that is different from what was predicted before flight, explained Jeb Orr of the Charles Stark Draper Laboratory.

Conventional control systems are designed or ‘tuned’ using models on the ground, he added. Naturally, the way the vehicle behaves in flight is never exactly the same as modeled, so the control system must be robust — that is, able to tolerate flying a vehicle that is a bit different from what the designers expect.

Large rockets like the SLS have complex computers and software that swivel the rocket engines to steer the vehicle along its flight path. NASA’s new software algorithm will make real-time†adjustments as the vehicle pushes toward space, helping improve performance and enhancing crew safety in the particularly stressful parts of the flight.

In November and December 2013, the team of engineers, technicians and pilots completed two series of test flights to assess the adaptive augmenting controller software planned for the rocket on a modified NASA F/A-18 at NASA Armstrong.

“The multi-center NASA team worked together seamlessly, yielding a major advance in launch vehicle flight control technology and substantially accelerating the application of adaptive control to manned systems,” Orr said.

One of first project tasks for engineers at NASA Armstrong was the development of a mission trajectory that an aircraft could fly that would simulate the SLS launch. Other responsibilities were the implementation of the software on the F/A-18 and mission planning. Part of that mission plan called for the pilot to engage the adaptive controller to mitigate the simulated effects of extreme scenarios, like bending instability during the simulated rocket trajectory.

NASA Armstrong’s F/A-18A Full Scale Advanced Systems Testbed aircraft pitches up during an LVAC Adaptive Augmenting Control validation flight.

“The engineers at Marshall were developing a simple adaptive control law, and wanted to flight test it,” said Chris Miller, chief engineer for the Launch Vehicle Adaptive Control (LVAC) project at NASA Armstrong. “They considered their options and the available platforms, including sounding rockets and the F/A-18.†Our engineers worked with them to determine what aspects of their control law we could test in a meaningful way on the F/A-18.

They recognized very early the importance of flight research for gaining the necessary experience, confidence, and acceptance of any new technology,” added Miller. “Performing that kind of research in flight is part of our DNA at NASA Armstrong, and we were excited to contribute our capabilities and skills to help the Marshall team test their technology on our F/A-18 aircraft.

In one of the innovative tests, the F/A-18 flew a sequence of test points that maximized the bending excitation of the actual airplane based on data collected from earlier flights and prior structural tests. The bending response was isolated and the key features were reproduced in simulation, allowing the control variables to be modified accordingly to induce a real structural instability that the adaptive controller would have to mitigate.

Subsequent tests used that data to intentionally place the airplane in structural resonance, which causes the aircraft to vibrate while in flight.†The adaptive augmenting control system then responded to these vibrations, suppressing them when they were large, meeting one of the major objectives of the adaptive controller. †

The adaptive controller experiment was tested on six research flights. During these flights, almost 100 SLS trajectories and over a dozen straight-and-level airframe structural amplification tests were successfully executed, many of which were to collect additional data regarding the interaction of the pilot, the simulated SLS vehicle dynamics, and the adaptive augmenting control algorithm. †

The goal of the F/A-18 flights was to advance the technology readiness of the SLS adaptive control design by operating it in a relevant environment while introducing a wide varie

Can a rocket maneuver like an airplane?

And can an airplane act as a surrogate for a maneuvering rocket?

NASA engineers demonstrated just that when they used a NASA F/A-18 aircraft recently to simulate a rocket in its early flight phase to test adaptive software for NASA’s new rocket the Space Launch System (SLS), the largest, most powerful launch vehicle for deep space missions.

The tests are helping engineers working on the development of the SLS at NASAs Marshall Space Flight Center in Huntsville, Ala., ensure the rocket can adjust to the environment it faces as it makes its way to space.

NASA Armstrong research test pilot Jim Less climbs aboard the center’s F/A-18A Full Scale Advanced Systems Testbed for one of the Launch Vehicle Adaptive Control test flights.

Engineers reviewed the root causes of historical launch vehicle failures and found that although guidance, navigation and control systems were rarely the cause of the incidents, they discovered that advancements in this technology could result in expanded capabilities to keep the rocket on track in the face of anomalies that might occur in flight.

When NASA develops new technology for launch vehicles like Adaptive Augmenting Control, we want to test it in order to mature the technology and build our confidence in it,” said Tannen VanZwieten, NASA Marshall’s SLS flight control lead. “But in lieu of a launch vehicle flight test, we need to find creative ways to mature it through testing in a relevant environment.

“With our flight software, the SLS program at Marshall partnered with NASA’s Engineering and Safety Center, Armstrong Flight Research Center at Edwards, Calif., and the Space Technology Mission Directorate’s Game Changing Development Program to test our algorithm on a NASA F/A-18 airplane, added VanZwieten.

An early version of an adaptive control system was used on the last X-15 rocket plane that was built in the 1960s. As the X-15 reached thinning atmosphere at the edge of space, the adaptive control system automatically responded to the changing conditions by increasing the responsiveness of the control surfaces to commands.

An adaptive control system is any type of control system that changes its parameters in flight to adjust to information that it learns about the vehicle that is different from what was predicted before flight, explained Jeb Orr of the Charles Stark Draper Laboratory.

Conventional control systems are designed or ‘tuned’ using models on the ground, he added. Naturally, the way the vehicle behaves in flight is never exactly the same as modeled, so the control system must be robust — that is, able to tolerate flying a vehicle that is a bit different from what the designers expect.

Large rockets like the SLS have complex computers and software that swivel the rocket engines to steer the vehicle along its flight path. NASA’s new software algorithm will make real-timeadjustments as the vehicle pushes toward space, helping improve performance and enhancing crew safety in the particularly stressful parts of the flight.

In November and December 2013, the team of engineers, technicians and pilots completed two series of test flights to assess the adaptive augmenting controller software planned for the rocket on a modified NASA F/A-18 at NASA Armstrong.

“The multi-center NASA team worked together seamlessly, yielding a major advance in launch vehicle flight control technology and substantially accelerating the application of adaptive control to manned systems,” Orr said.

One of first project tasks for engineers at NASA Armstrong was the development of a mission trajectory that an aircraft could fly that would simulate the SLS launch. Other responsibilities were the implementation of the software on the F/A-18 and mission planning. Part of that mission plan called for the pilot to engage the adaptive controller to mitigate the simulated effects of extreme scenarios, like bending instability during the simulated rocket trajectory.

“The engineers at Marshall were developing a simple adaptive control law, and wanted to flight test it,” said Chris Miller, chief engineer for the Launch Vehicle Adaptive Control (LVAC) project at NASA Armstrong. “They considered their options and the available platforms, including sounding rockets and the F/A-18.Our engineers worked with them to determine what aspects of their control law we could test in a meaningful way on the F/A-18.

They recognized very early the importance of flight research for gaining the necessary experience, confidence, and acceptance of any new technology,” added Miller. “Performing that kind of research in flight is part of our DNA at NASA Armstrong, and we were excited to contribute our capabilities and skills to help the Marshall team test their technology on our F/A-18 aircraft.

In one of the innovative tests, the F/A-18 flew a sequence of test points that maximized the bending excitation of the actual airplane based on data collected from earlier flights and prior structural tests. The bending response was isolated and the key features were reproduced in simulation, allowing the control variables to be modified accordingly to induce a real structural instability that the adaptive controller would have to mitigate.

Subsequent tests used that data to intentionally place the airplane in structural resonance, which causes the aircraft to vibrate while in flight.The adaptive augmenting control system then responded to these vibrations, suppressing them when they were large, meeting one of the major objectives of the adaptive controller.

The adaptive controller experiment was tested on six research flights. During these flights, almost 100 SLS trajectories and over a dozen straight-and-level airframe structural amplification tests were successfully executed, many of which were to collect additional data regarding the interaction of the pilot, the simulated SLS vehicle dynamics, and the adaptive augmenting control algorithm.

The goal of the F/A-18 flights was to advance the technology readiness of the SLS adaptive control design by operating it in a relevant environment while introducing a wide variety of unusual launch scenarios, said Curtis Hanson, NASA Armstrong’s principal investigator for the project.

These tests helped to validate the Marshall teams design philosophy that the controller only adapts when necessary, and that it works to maintain acceptable trajectory tracking and structural resonance characteristics throughout a wider operational envelope than the traditional design alone,” Hanson added. The tests also helped to identify any adverse interactions between the pilot and the adaptive controller in a proposed manual steering mode for the SLS.

Collaborative efforts among the different NASA organizations is one of the ways the Space Technology Mission Directorate is seeking to rapidly develop and demonstrate high-payoff technologies that potentially offset mission risk, reduce costs and advance enabling technologies for NASA.

“Space Technology’s Game Changing Development Program is happy to work with NASA centers on innovativetechnology development, such as the LVAC work,” said Stephen Gaddis, Game Changing Development program manager. “We are expecting the results to aid in the control algorithms for NASA’s Space Launch System.”
ty of unusual launch scenarios, said Curtis Hanson, NASA Armstrong’s principal investigator for the project.

These tests helped to validate the Marshall teams design philosophy that the controller only adapts when necessary, and that it works to maintain acceptable trajectory tracking and structural resonance characteristics throughout a wider operational envelope than the traditional design alone,” Hanson added. The tests also helped to identify any adverse interactions between the pilot and the adaptive controller in a proposed manual steering mode for the SLS.

Collaborative efforts among the different NASA organizations is one of the ways the Space Technology Mission Directorate is seeking to rapidly develop and demonstrate high-payoff technologies that potentially offset mission risk, reduce costs and advance enabling technologies for NASA.

“Space Technology’s Game Changing Development Program is happy to work with NASA centers on innovative†technology development, such as the LVAC work,” said Stephen Gaddis, Game Changing Development program manager. “We are expecting the results to aid in the control algorithms for NASA’s Space Launch System.”




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 26, 2014

News: When Hagel leaves, new SecDef faces big questions about the military’s future - President Obama’s new pick to run the Pentagon will face a dizzying set of challenges affecting the Defense Department’s mission, budget and culture. Who will be the next Secretary of Defense?- Following the Nov. 24 surprise announcement from the White House, the...
 
 

News Briefs November 26, 2014

Navy to decommission two more ships in Puget Sound The Navy recently decommissioned the guided missile frigate USS Ingraham at Everett, Wash. It will be towed to Bremerton and scrapped. The Daily Herald reports the Navy also plans to decommission another ship at the Everett homeport and also one stationed in Bremerton. Naval Station Everett...
 
 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 

 
Air Force photograph by Rick Goodfriend

16T Pitch Boom reactivated to support wind tunnel tests

Air Force photograph by Rick Goodfriend The Pitch Boom at the AEDC 16-foot transonic wind tunnel (16T) was recently reactivated. This model support system is used in conjunction with a roll mechanism to provide a combined pitch...
 
 

Northrop Grumman supports U.S. Air Force Minuteman missile test launch

Northrop Grumman recently supported the successful flight testing of the U.S. Air Force’s Minuteman III intercontinental ballistic missile weapon system. The operational flight test was conducted as part of the Air Force Global Strike Command’s Force Development Evaluation Program. This program demonstrates and supports assessment of the accuracy, availability and reliability of the...
 
 
army-detector

Scientists turn handheld JCAD into a dual-use chemical, explosives detector

Scientists at the U.S. Army Edgewood Chemical Biological Center at Aberdeen Proving Ground, Md., proved it is possible to teach an old dog new tricks by adding the ability to detect explosive materials to the Joint Chemical Age...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>