Space

April 7, 2014

Intelsat General, L-3 Communication Systems-West test protected Air Force tactical technology on Ku-band

Intelsat General Corp. and L-3 Communication Systems-West (L-3 CS-West) announced the successful demonstration of new U.S. Air Force Protected Tactical Waveform technology over Ku-band transponders on the Intelsat fleet.

The demonstrations and performance characterization were conducted at the Intelsat teleport in Ellenwood, GA, during the week of March 4th. Engineers conducting the tests measured the performance of anti-jam modems and waveform technology from L-3 CS-West on a Ku-band satellite emulator and over the Galaxy 18 satellite, built by SSL and launched in 2008. The tests, observed by a representative from the Air Force Space and Missile Systems Center, demonstrated full-duplex voice, video and IP data via the Air Forceís new Protected Tactical Waveform.

L-3 CS-West is currently working under an Air Force contract, performing studies and developing proof-of-concept modem and security designs using PTW. PTW is designed to provide affordable, anti-jam SATCOM capabilities over existing satellites, leveraging commercial, off-the-shelf technologies.

The testing and transmissions over an existing Intelsat Ku-band satellite validate the compatibility of the PTW with commercial space assets. They also pave the way for future affordable upgrades to provide anti-jam protection to existing Ku-band systems, such as Army, Navy and Air Force remotely piloted aircraft.

Through our collaboration with Intelsat, both airborne and ground users will be able to upgrade using L-3 wideband modems for both higher capacity and protected capabilities, said Val Snyder, President of L-3 ñ Communication Systems West. These results are a big step toward providing our customers the ability to modernize their existing assets to include protected capabilities within the fiscally constrained defense budget environment of today.

L-3 CS-West provided PTW terminal and hub modems to support the end-to-end tests. The modem technology supports processing bandwidths up to 2 GHz and data rates from 10 kbps up to 300 Mbps.

Following the successful demonstration, Intelsat and L-3 CS-West plan to further analyze the potential capabilities of the PTW on Intelsat EpicNG satellites over the next year. The companies expect to conduct additional demonstrations on the Intelsat EpicNG platform in 2015.

The results achieved are an important step toward future upgrades for existing Ku-band users in a constrained budgetary environment, said Mark Daniels, VP of Engineering and Operations at Intelsat General. In addition to anti-jam communications over legacy Ku-band systems, the increased performance, localized beams and wider bandwidths of our new Intelsat EpicNG technology could offer government customers potential protection levels that are extremely attractive.




All of this week's top headlines to your email every Friday.


 
 

 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 
 

NASA releases first global rainfall, snowfall map from new mission

Like a lead violin tuning an orchestra, the GPM Core Observatory – launched one year ago on Feb. 27, 2014, as a collaboration between NASA and the Japan Aerospace Exploration Agency – acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA’s Integrated Multi-satellite Retrievals for GPM...
 

 

New NASA Earth Science Missions expand view of our home planet

Four new NASA Earth-observing missions are collecting data from space with a fifth newly in orbit ñ after the busiest year of NASA Earth science launches in more than a decade. On Feb. 27, 2014, NASA and the Japan Aerospace Exploration Agency launched the Global Precipitation Measurement Core Observatory into space from Japan. Data from...
 
 

NASA, ESA telescopes give shape to furious black hole winds

NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA’s (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions – a phenomenon that had been suspected, but difficult to prove until now. This discovery has given astronomers their first opportunity to measure the strength of these...
 
 
NASA photograph by Gary Banziger

Jurczyk named head of NASA Space Technology Mission Directorate

NASA photograph by Gary Banziger NASA’s Steve Jurczyck addresses an audience during a manufacturing event in Hampton, Va., last month. NASA Administrator Charles Bolden has named Steve Jurczyk as the agency’s Associ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>