Space

April 7, 2014

Intelsat General, L-3 Communication Systems-West test protected Air Force tactical technology on Ku-band

Intelsat General Corp. and L-3 Communication Systems-West (L-3 CS-West) announced the successful demonstration of new U.S. Air Force Protected Tactical Waveform technology over Ku-band transponders on the Intelsat fleet.

The demonstrations and performance characterization were conducted at the Intelsat teleport in Ellenwood, GA, during the week of March 4th. Engineers conducting the tests measured the performance of anti-jam modems and waveform technology from L-3 CS-West on a Ku-band satellite emulator and over the Galaxy 18 satellite, built by SSL and launched in 2008. The tests, observed by a representative from the Air Force Space and Missile Systems Center, demonstrated full-duplex voice, video and IP data via the Air Forceís new Protected Tactical Waveform.

L-3 CS-West is currently working under an Air Force contract, performing studies and developing proof-of-concept modem and security designs using PTW. PTW is designed to provide affordable, anti-jam SATCOM capabilities over existing satellites, leveraging commercial, off-the-shelf technologies.

The testing and transmissions over an existing Intelsat Ku-band satellite validate the compatibility of the PTW with commercial space assets. They also pave the way for future affordable upgrades to provide anti-jam protection to existing Ku-band systems, such as Army, Navy and Air Force remotely piloted aircraft.

Through our collaboration with Intelsat, both airborne and ground users will be able to upgrade using L-3 wideband modems for both higher capacity and protected capabilities, said Val Snyder, President of L-3 ñ Communication Systems West. These results are a big step toward providing our customers the ability to modernize their existing assets to include protected capabilities within the fiscally constrained defense budget environment of today.

L-3 CS-West provided PTW terminal and hub modems to support the end-to-end tests. The modem technology supports processing bandwidths up to 2 GHz and data rates from 10 kbps up to 300 Mbps.

Following the successful demonstration, Intelsat and L-3 CS-West plan to further analyze the potential capabilities of the PTW on Intelsat EpicNG satellites over the next year. The companies expect to conduct additional demonstrations on the Intelsat EpicNG platform in 2015.

The results achieved are an important step toward future upgrades for existing Ku-band users in a constrained budgetary environment, said Mark Daniels, VP of Engineering and Operations at Intelsat General. In addition to anti-jam communications over legacy Ku-band systems, the increased performance, localized beams and wider bandwidths of our new Intelsat EpicNG technology could offer government customers potential protection levels that are extremely attractive.




All of this week's top headlines to your email every Friday.


 
 

 

Boeing concludes commercial crew space act agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket. NASA in July approved the Critical Design Review Board milestone for Boeing’...
 
 

NASA partners with leading technology innovators to enable future exploration

Recognizing that technology drives exploration, NASA has selected four teams of agency technologists for participation in the Early Career Initiative pilot program. The program encourages creativity and innovation among early career NASA technologists by engaging them in hands-on technology development opportunities needed for future missions. NASA’s Space Technology Mission Directorate c...
 
 

New commercial rocket descent data may help NASA with future Mars landings

NASA successfully captured thermal images of a SpaceX Falcon 9 rocket on its descent after it launched in September from Cape Canaveral Air Force Station, Fla. The data from these thermal images may provide critical engineering information for future missions to the surface of Mars. “Because the technologies required to land large payloads on Mars...
 

 
Image courtesy of NASA, J. Lotz, (STScI

NASA’s Hubble finds extremely distant galaxy through cosmic magnifying glass

Image courtesy of NASA, J. Lotz, (STScI The mammoth galaxy cluster Abell 2744 is so massive that its powerful gravity bends the light from galaxies far behind it, making these otherwise unseen background objects appear larger a...
 
 
NASA photograph

NASA TV to air Russian spacewalk from International Space Station

NASA photograph Expedition 41 Commander Max Suraev and Flight Engineer Alexander Samokutyaev of the Russian Federal Space Agency will don Orlan spacesuits and step outside the International Space Station Oct. 22, to perform wor...
 
 
Ball Aerospace photograph

Ball Aerospace green propellant infusion mission to host three DOD space experiments

Ball Aerospace photograph The NASA and Ball Aerospace & Technologies Corp. Green Propellant Infusion Mission (GPIM) will fly three Defense Department experimental hosted payloads when it launches in 2016. The NASA and Ball ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>