Defense

April 7, 2014

Navy to deploy electromagnetic railgun aboard JHSV

The second of two Office of Naval Research (ONR) Electromagnetic (EM) Railgun industry prototype launchers is being evaluated at the Naval Surface Warfare Center, Dahlgren Division. Both General Atomics and BAE Systems have designed next generation prototype EM Railguns capable of increased firing rates. The EM Railgun is a long-range weapon that launches projectiles using electricity instead of chemical propellants and is under development by the Department of the Navy for use aboard ships.

The U.S. Navy plans to install and test a prototype electromagnetic railgun aboard a joint high speed vessel in fiscal year 2016, the service announced April 7.

This test will mark the first time an electromagnetic railgun (EM railgun) has been demonstrated at sea, symbolizing a significant advance in naval combat.

EM railgun technology uses an electromagnetic force – known as the Lorenz Force – to rapidly accelerate and launch a projectile between two conductive rails. This guided projectile is launched at such high velocities that it can achieve greater ranges than conventional guns. It maintains enough kinetic energy that it doesn’t require any kind of high explosive payload when it reaches its target.

High-energy EM railguns are expected to be lethal and effective against multiple threats, including enemy warships, small boats, aircraft, missiles and land-based targets.

“The electromagnetic railgun represents an incredible new offensive capability for the U.S. Navy,” said Rear Adm. Bryant Fuller, the Navy’s chief engineer. “This capability will allow us to effectively counter a wide-range of threats at a relatively low cost, while keeping our ships and sailors safer by removing the need to carry as many high-explosive weapons.”

EM railgun technology will complement current kinetic weapons currently onboard surface combatants and offer a few specific advantages. Against specific threats, the cost per engagement is orders of magnitude less expensive than comparable missile engagements. The projectile itself is being designed to be common with some current powder guns, enabling the conservation of expensive missiles for use against more complex threats.

“Energetic weapons, such as EM railguns, are the future of naval combat,” said Rear Adm. Matt Klunder, the chief of naval research. “The U.S. Navy is at the forefront of this game-changing technology.”

This demonstration is the latest in a series of technical maturation efforts designed to provide an operational railgun to the fleet. Since 2005, the Navy and its partners in industry and academia have been testing railgun technology at the Naval Surface Warfare Center in Dahlgren, Va., and the Naval Research Lab where the service has a number of prototype systems.

The final operational system will be capable of launching guided, multi-mission projectiles to a range of 110 nautical miles against a wide range of threats. The series of tests are designed to capture lessons for incorporation into a future tactical design and will allow the Navy to best understand needed ship modifications before fully integrating the technology.

The Navy is using JHSV as a vessel of opportunity because of its available cargo and topside space and schedule flexibility. Because JHSVs are non-combatants, there is no plan to permanently install a railgun on any ship of the class. A final decision has not been made on which ship classes will receive a fully operational railgun.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 17, 2014

News: U.S. Air Force tanker platform slated for year-end debut - Boeing is planning for first flight of its 767-2C – upon which the U.S. Air Force’s new KC-46 tanker will be based – by year’s end, six months late. Northrop Grumman wins $657.4 million deal to supply drones to South Korea - Northrop Grumman has won...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 

 
Coast Guard photograph

Navy demonstrates unmanned helicopter operations aboard Coast Guard cutter

http://static.dvidshub.net/media/video/1412/DOD_102145893/DOD_102145893-512×288-442k.mp4 Coast Guard photograph An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>