Defense

April 7, 2014

Navy to deploy electromagnetic railgun aboard JHSV

The second of two Office of Naval Research (ONR) Electromagnetic (EM) Railgun industry prototype launchers is being evaluated at the Naval Surface Warfare Center, Dahlgren Division. Both General Atomics and BAE Systems have designed next generation prototype EM Railguns capable of increased firing rates. The EM Railgun is a long-range weapon that launches projectiles using electricity instead of chemical propellants and is under development by the Department of the Navy for use aboard ships.

The U.S. Navy plans to install and test a prototype electromagnetic railgun aboard a joint high speed vessel in fiscal year 2016, the service announced April 7.

This test will mark the first time an electromagnetic railgun (EM railgun) has been demonstrated at sea, symbolizing a significant advance in naval combat.

EM railgun technology uses an electromagnetic force – known as the Lorenz Force – to rapidly accelerate and launch a projectile between two conductive rails. This guided projectile is launched at such high velocities that it can achieve greater ranges than conventional guns. It maintains enough kinetic energy that it doesn’t require any kind of high explosive payload when it reaches its target.

High-energy EM railguns are expected to be lethal and effective against multiple threats, including enemy warships, small boats, aircraft, missiles and land-based targets.

“The electromagnetic railgun represents an incredible new offensive capability for the U.S. Navy,” said Rear Adm. Bryant Fuller, the Navy’s chief engineer. “This capability will allow us to effectively counter a wide-range of threats at a relatively low cost, while keeping our ships and sailors safer by removing the need to carry as many high-explosive weapons.”

EM railgun technology will complement current kinetic weapons currently onboard surface combatants and offer a few specific advantages. Against specific threats, the cost per engagement is orders of magnitude less expensive than comparable missile engagements. The projectile itself is being designed to be common with some current powder guns, enabling the conservation of expensive missiles for use against more complex threats.

“Energetic weapons, such as EM railguns, are the future of naval combat,” said Rear Adm. Matt Klunder, the chief of naval research. “The U.S. Navy is at the forefront of this game-changing technology.”

This demonstration is the latest in a series of technical maturation efforts designed to provide an operational railgun to the fleet. Since 2005, the Navy and its partners in industry and academia have been testing railgun technology at the Naval Surface Warfare Center in Dahlgren, Va., and the Naval Research Lab where the service has a number of prototype systems.

The final operational system will be capable of launching guided, multi-mission projectiles to a range of 110 nautical miles against a wide range of threats. The series of tests are designed to capture lessons for incorporation into a future tactical design and will allow the Navy to best understand needed ship modifications before fully integrating the technology.

The Navy is using JHSV as a vessel of opportunity because of its available cargo and topside space and schedule flexibility. Because JHSVs are non-combatants, there is no plan to permanently install a railgun on any ship of the class. A final decision has not been made on which ship classes will receive a fully operational railgun.




All of this week's top headlines to your email every Friday.


 
 

 
Army photograph by C. Todd Lopez

Smart-mortar will help Soldiers more effectively hit targets

Army photograph by C. Todd Lopez Nick Baldwin and Evan Young, researchers with the Armament Research Development and Engineering Center at Picatinny Arsenal, Pennsylvania, discuss the 120mm Guided Enhanced Fragmentation Mortar ...
 
 

Air Force assigns new chief scientist

The Air Force announced the service’s new chief scientist to serve as a science and technology adviser to the secretary of the Air Force and the chief of staff of the Air Force, May 21. Dr. Greg Zacharias will be the 35th chief scientist and is ready to “dive in” to his new role. “I...
 
 

TSgt promotion release delayed to allow system validation

Technical sergeant promotion selection results, originally scheduled for release May 28, will be delayed to enable the Air Force to continue to validate extensive system changes to the Weighted Airman Promotion System, officials announced. The 15E6 technical sergeant promotion cycle is the first to incorporate recent changes in the enlisted evaluation and promotion system. Recent...
 

 

Freedom completes rough water trials

The littoral combat ship USS Freedom completed Seakeeping and Structural Loads Trials, commonly referred to as Rough Water Trials in late March the Navy reported May 21. The U.S. Navy must demonstrate the seaworthiness and structural integrity of each new ship class. One of the primary ways the Navy verifies these qualities is through a...
 
 

Air Force releases Strategic Master Plan

The Air Force officially released the Strategic Master Plan May 21, which is the latest in a series of strategic documents designed to guide the organizing, training and equipping of the force over the coming decades. The SMP builds on the strategic imperatives and vectors described in the capstone document, America’s Air Force: A Call...
 
 

HYT extension possible for SrA-MSgt in 35 career fields

Eligible senior airmen, staff sergeants, technical sergeants and master sergeants in 35 Air Force specialties will be able to apply for a high year of tenure extension and, if approved, will be able to extend between 12 and 24 months past their current HYT. The Air Force is introducing several personnel and manpower initiatives to...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>