Space

April 9, 2014

Near Infrared Camera Integrated into space telescope

Lockheed Martin and the University of Arizona have delivered the primary imaging instrument of the James Webb Space Telescope to NASA’s Goddard Space Flight Center.

The new Near Infrared Camera, or NIRCam, has been successfully integrated within the heart of the telescope, known as the Integrated Science Instrument Module. The integration completes the suite of four instruments that together will explore the mysteries of the deep universe upon launch in 2018.

NIRCam will function as the central imaging component of JWST. Designated one of the NASA’s three highest mission priorities, the Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

NIRCam was designed, built, and tested by a University of Arizona / Lockheed Martin team at the company’s Advanced Technology Center in Palo Alto, Calif., under the leadership of Principal Investigator Marcia Rieke, a Regents’ Professor at the Arizona Department of Astronomy/Steward Observatory. Lockheed Martin is responsible for the optical, mechanical, structural, thermal and electronic precision mechanisms and the control software of NIRCam, while its advanced infrared detector arrays come from Teledyne Imaging Systems.

“Integration of NIRCam into ISIM is a major step forward in the progress of the Webb telescope,” said Jeff Vanden Beukel, Lockheed Martin NIRCam program director. “Now, NIRCam and the other instruments will be tested to prove their ability to function as a unit.”

As the space telescope’s prime camera, NIRCam will make JWST the most powerful space telescope ever built, enabling it to peer deeper into space and further back in time than any other instrument before. With its 6.5-meter (21-foot) mirror, JWST will allow observation of the most distant objects in the universe.

“The instrument operates out to wavelengths about ten times that of visible light, letting it search for the first galaxies. It is the cosmic redshift that has moved the outputs of these ‘first light’ sources into the infrared where NIRCam operates. We will survey selected regions on the sky to find candidates; the other instruments on JWST can then probe these objects in detail to test if they really are that young,” Rieke explained. “NIRCam can also peer through the clouds of gas and dust that hide the first stages when stars and planets are born and will provide insights into how planetary systems form and evolve around distant stars.”

NIRCam is comprised of many cutting-edge technologies, such as the infrared detector arrays themselves, a complex optical system based on lenses rather than the mirrors used in most infrared instruments, and devices to measure the optical performance of the JWST telescope and allow adjustments to keep it operating correctly.

Upon launch, JWST will be operated as an observatory open by competitive proposal to astronomers worldwide. The astronomy community is eagerly anticipating data from the mission, which is not only much larger than Hubble but covers the longer-wavelength infrared spectral range with unprecedented capabilities.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 24, 2015

News: More than $1 billion in U.S. emergency reconstruction aid goes missing in Afghanistan - A total of $1.3 billion that the Pentagon shipped to its force commanders in Afghanistan between 2004 and 2014 for the most critical reconstruction projects can’t be accounted for by the Defense Department, 60 percent of all such spending under an...
 
 

News Briefs April 24, 2015

German defense minister: widely used rifle has no future A widely used assault rifle has “no future” with the German military in its current form, Germany’s defense minister said April 22, escalating a dispute over the weapon’s alleged shortcomings. Ursula von der Leyen said last month that a study showed the G36 rifle has a...
 
 
Army photograph

Composites key to tougher, lighter armaments

Army photograph XM-360 test firing at Aberdeen Proving Ground, Md., in 2007, is shown. The Army is on the cusp of revolutionizing materials that go into armament construction, making for stronger, lighter and more durable weapo...
 

 

Northrop Grumman signs long-term agreement with Raytheon

Northrop Grumman has entered a long-term agreement with Raytheon to supply its LN-200 Inertial Measurement Unit for Raytheon optical targeting systems. The long-term agreement with Raytheon’s Space and Airborne Systems business extends through 2018. The LN-200 provides camera stabilization on optical targeting systems that conduct long-range surveillance and target acquisition for various...
 
 

NTTR supports first F-35B integration into USMC’s weapons school exercise

The Nevada Test and Training Range was part of history April 21, when four U.S. Marine Corps-assigned F-35B Lightning IIs participated in its first Marine Corps’ Final Exercise of the Weapons and Tactics Instructor course on the NTTR’s ranges. The Final Exercise, or FINEX, is the capstone event to the U.S. Marine Corps Marine Aviation...
 
 
AAR-Textron

AAR awarded new contract from Bell Helicopter Textron to support T64 engines

AAR announced April 22 that Bell Helicopter Textron Inc. awarded its Defense Systems & Logistics business unit a contract providing warehouse and logistics services in support of upgrading T64 engines for the Bell V-280 Val...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>