Tech

April 18, 2014

Phoenix makes strides in orbital robotics, satellite architecture research

darpa-phoenix1
The process of designing, developing, building and deploying satellites is long and expensive. Satellites today cannot follow the terrestrial paradigm of “assemble, repair, upgrade, reuse,” and must be designed to operate without any upgrades or repairs for their entire lifespan—a methodology that drives size, complexity and ultimately cost.

These challenges apply especially to the increasing number of satellites sent every year into geosynchronous Earth orbit, approximately 22,000 miles above the Earth. Unlike objects in low Earth orbit, such as the Hubble Space Telescope, satellites in GEO are essentially unreachable with current technology.

DARPA created the Phoenix program to help address these daunting challenges. Phoenix seeks to change the current paradigm by enabling GEO robotics servicing and asset life extension, while developing new satellite architectures to reduce the cost of space-based systems. Specifically, Phoenix’s goal is to develop and demonstrate technologies that make it possible to inspect and robotically service cooperative space systems in GEO and to validate new satellite assembly architectures. Phoenix has achieved promising Phase 1 results and has awarded eight companies prime contracts for its Phase 2 efforts.

“Phase 1 not only showed the feasibility of our robotic tools and assembly techniques, but also validated the concept that we could build new satellites on orbit by physically aggregating satlets in space,” said David Barnhart, DARPA program manager. “These successes could eventually lead to the revolutionary ability to create new, truly scalable space systems on orbit at a fraction of current costs.”

Phoenix’s Phase 2 efforts plan to focus on developing technologies in three primary technical areas of research:

o Advanced GEO space robotics: DARPA is developing a variety of robotics technologies to address key on-orbit mission needs, including assembly, repair, asset life extension, refueling, etc., in the harsh environment of geosynchronous orbit. Development activities include the maturation of robotic arms and multiple generic and mission-specific tools.\

These technologies would be part of a future robotic assembly platform, the Servicer/Tender.

* Satlets: A new low-cost, modular satellite architecture that can scale almost infinitely. Satlets are small independent modules (roughly 15 pounds/7 kg) that incorporate essential satellite functionality (power supplies, movement controls, sensors, etc.). Satlets share data, power and thermal management capabilities.

darpa-phoenix2

Satlets also physically aggregate (attach together) in different combinations that would provide capabilities to accomplish a range of diverse space missions with any type, size or shape payload. Because they are modular, they can be produced on an assembly line at low cost and integrated very quickly with different payloads. DARPA is presently focused on validating the technical concept of satlets in LEO.

* Payload Orbital Delivery (POD) system: The POD would be a standardized mechanism designed to safely carry a wide variety of separable mass elements to orbit—including payloads, satlets and electronics—aboard commercial communications satellites. This approach would take advantage of the tempo and “hosted payload” services that commercial satellites now provide while enabling lower-cost delivery to GEO. DARPA is also pursuing a possible risk-reduction flight to validate the POD technology, which could eventually provide “‘FedEx®’ to GEO” capabilities to make future space deliveries to high orbit much easier and faster.

“Individually or together, these technologies could help enable not just Phoenix’s original concept of re-use, but a broad class of other robotically enabled missions at GEO as well,” Barnhart said. “They could help satellites reach new or proper orbits, inspect satellites as part of routine maintenance or troubleshooting efforts, repair or replace worn-out components, or add or upgrade capabilities. These capabilities would enable space systems, for the first time, to have the flexibility, accessibility and resilience that designers of terrestrial systems take for granted.”

DARPA has awarded prime contracts for Phase 2 of Phoenix to the following companies:

* Busek

* Energid Inc.

* Honeybee Robotics

* MacDonald, Dettwiler and Associates Ltd.-Canada

* MacDonald, Dettwiler and Associates Ltd.-U.S.

* NovaWurks

* Oceaneering Inc.

* Space Systems/Loral




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 15, 2014

News: Navy identifies pilot presumed dead in crash - A Navy fighter pilot presumed dead after two fighter jets crashed in the far western Pacific Ocean has been identified.   Business: Boeing eyes 737-700 solution for new JSTARS - Boeing is officially planning a variant of its 737-700 commercial jetliner as a competitor for the Air Force’s...
 
 

News Briefs September 15, 2014

Australia contributing planes for anti-IS campaign Australia is preparing to contribute 600 troops and up to 10 military aircraft to the increasingly aggressive campaign against the Islamic State extremists in Syria and Iraq, Prime Minister Tony Abbott said Sept. 14. Abbott said Australia was responding to a formal request from the United States for specific...
 
 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 

 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 
 
Image courtesy of NASA/JPL-Caltech/Univ. of Arizona

NASA’s Mars Curiosity rover arrives at Martian mountain

NASA’s Mars Curiosity rover has reached the Red Planet’s Mount Sharp, a Mount-Rainier-size mountain at the center of the vast Gale Crater and the rover mission’s long-term prime destination. “Curiosity n...
 
 

Raytheon begins full rate production on TALON Laser Guided Rockets

Under a $117 million contract awarded to Raytheon, Raytheon Missile Systems has begun production of the TALON Laser Guided Rocket. In 2013, the Armed Forces General Headquarters of the United Arab Emirates awarded Tawazun a contract to procure the TALON Laser Guided Rocket. “Full rate production of the TALON LGR is a significant milestone for...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>