Business

April 18, 2014

Sikorsky tests CH-53K helicopter for airframe structural strength

sikorsky-test
Sikorsky Aircraft Corp., a subsidiary of United Technologies Corp., has successfully completed an initial series of tests required by the Naval Air Systems Command to verify the structural strength of the CH-53K heavy lift helicopter.

Conducted on a full-size non-flying airframe called the Static Test Article, the tests are part of a three-year program to validate that the largest helicopter ever designed and built by Sikorsky has the structural integrity to operate safely over its entire flight envelope — from its empty gross weight of 44,000 pounds up to its maximum gross weight of 88,000 pounds with external load.

“The Static Test Article will enable Sikorsky to replicate the many stresses, strains and aerodynamic forces the CH-53K helicopter will experience during all aspects of flight, whether the aircraft is empty, filled with cargo, or carrying up to 36,000 pounds of gear suspended beneath the aircraft by an external sling,” said Mike Torok Sikorsky’s CH-53K Program Vice President. “By placing incrementally heavier static loads on various parts of the airframe assembly — including those well beyond the airframe’s analytical design strength — we can measure structural integrity, airworthiness and crash worthiness, and verify safety margins for all expected operational conditions.”

The Static Test Article is housed in a specially-built test facility at Sikorsky’s manufacturing plant in Stratford, Conn. Consisting of the cockpit, the cabin, fuel sponsons, a transition section and the tail rotor pylon, the complete airframe assembly is suspended off the ground by the shaft of its main rotor gearbox. Surrounding support beams hold the numerous hydraulic cylinders that apply the flight and inertial loads to parts of the airframe assembly. Also attached to the STA structure are component-representative weights that simulate the presence of the engines and landing gear, among other key subsystems and components.

To date, Sikorsky has completed a total of six test conditions on the Static Test Article, all conducted during 2013 and early 2014. The first four test conditions satisfy pre-flight requirements ahead of a CH-53K flight test aircraft taking to the skies for the first time later this year. Replicating the maximum load conditions encountered while in flight, the four pre-flight tests measured the structural strength of the tail rotor pylon during high and low speed flight maneuvers, the landing gear during impact with the ground, and the full airframe structure while under maximum rotor power.

Sikorsky will continue to test the structural integrity of the CH-53K Static Test Article for another two years to validate the effects of aerodynamic forces and weight distribution on different sections of the airframe.

The Static Test Article is the first of two non-flying CH-53K test articles — along with five prototype and four production-representative heavy lift helicopters — that Sikorsky is developing as part of a $3.8 billion System Development and Demonstration contract for the U.S. Navy.

Per the current program of record, the Marine intends to order 200 CH-53K production aircraft, and to stand up eight operational squadrons and one training squadron to support the Marine Corps’ operational requirements. Eventual production quantities would be determined year-by-year over the life of the program based on funding allocations set by Congress and the U.S. Department of Defense acquisition priorities.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 24, 2015

News: More than $1 billion in U.S. emergency reconstruction aid goes missing in Afghanistan - A total of $1.3 billion that the Pentagon shipped to its force commanders in Afghanistan between 2004 and 2014 for the most critical reconstruction projects can’t be accounted for by the Defense Department, 60 percent of all such spending under an...
 
 

News Briefs April 24, 2015

German defense minister: widely used rifle has no future A widely used assault rifle has “no future” with the German military in its current form, Germany’s defense minister said April 22, escalating a dispute over the weapon’s alleged shortcomings. Ursula von der Leyen said last month that a study showed the G36 rifle has a...
 
 
Army photograph

Composites key to tougher, lighter armaments

Army photograph XM-360 test firing at Aberdeen Proving Ground, Md., in 2007, is shown. The Army is on the cusp of revolutionizing materials that go into armament construction, making for stronger, lighter and more durable weapo...
 

 

Northrop Grumman signs long-term agreement with Raytheon

Northrop Grumman has entered a long-term agreement with Raytheon to supply its LN-200 Inertial Measurement Unit for Raytheon optical targeting systems. The long-term agreement with Raytheon’s Space and Airborne Systems business extends through 2018. The LN-200 provides camera stabilization on optical targeting systems that conduct long-range surveillance and target acquisition for various...
 
 

NTTR supports first F-35B integration into USMC’s weapons school exercise

The Nevada Test and Training Range was part of history April 21, when four U.S. Marine Corps-assigned F-35B Lightning IIs participated in its first Marine Corps’ Final Exercise of the Weapons and Tactics Instructor course on the NTTR’s ranges. The Final Exercise, or FINEX, is the capstone event to the U.S. Marine Corps Marine Aviation...
 
 
AAR-Textron

AAR awarded new contract from Bell Helicopter Textron to support T64 engines

AAR announced April 22 that Bell Helicopter Textron Inc. awarded its Defense Systems & Logistics business unit a contract providing warehouse and logistics services in support of upgrading T64 engines for the Bell V-280 Val...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>