Space

May 2, 2014

Hubble astronomers use supernovae to gauge power of cosmic lenses

Distant exploding stars observed by NASA’s Hubble Space Telescope are providing astronomers with a powerful tool to determine the strength of naturally-occurring “cosmic lenses” that are used to magnify objects in the remote universe.

Two teams of astronomers, working independently, observed three such exploding stars, called supernovae. Their light was amplified by the immense gravity of massive galaxy clusters in the foreground – a phenomenon called gravitational lensing. Astronomers use the gravitational lensing effect to search for distant objects that might otherwise be too faint to see, even with today’s largest telescopes.

“We have found supernovae that can be used like an eye chart for each lensing cluster,” explained Saurabh Jha of Rutgers University in Piscataway, N.J., a member of the Cluster Lensing and Supernova survey with Hubble (CLASH) team. “Because we can estimate the intrinsic brightness of the supernovae, we can measure the magnification of the lens.”

At least two of the supernovae appear to be a special type of exploding star called Type Ia supernovae, prized by astronomers because they have a consistent level of peak brightness that makes them a reliable tool for estimating distances.

Astronomers from the CLASH team and the Supernova Cosmology Project are using these supernovae in a new method for measuring the magnification, or prescription, of the gravitational lenses. With these prescriptions, astronomers are now equipped to make increasingly accurate observations of objects in the distant, early universe and better understand the structure of galaxy clusters,including its distribution of dark matter.

The power of a galaxy cluster as a gravitational lens depends on the total amount of matter in the cluster, including dark matter, which is  the source of most of a cluster’s gravity. Astronomers develop maps that estimate the location and amount of dark matter in a cluster by looking at the amount of distortion seen in more distant lensed galaxies. The maps provide the prescriptions — how much distant objects behind the cluster are magnified when their light passes through the cluster.

The three supernovae in the Hubble study were each gravitationally lensed by a different cluster of galaxies. The teams measured the brightness of each supernova, with and without the effects of lensing. The difference between the two measurements constitutes the amount of magnification because of gravitational lensing. From the final measurements, one of the three supernovae stood out, with an apparent magnification of about two times.

The supernovae were discovered in the CLASH survey, a Hubble census that probed the distribution of dark matter in 25 galaxy clusters. The three supernovae exploded between 7 billion and 9 billion years ago, when the universe was slightly more than half its current age of 13.8 billion years old.

To perform their analyses, both teams used observations in visible light, made by Hubble’s Advanced Camera for Surveys, and in infrared light, made by the telescope’s Wide Field Camera 3. Each team then compared its results with independent theoretical models of the clusters’ dark-matter content, concluding that the predictions fit the models.

Now that researchers have proven the effectiveness of this method of cosmic magnification, they are searching for more Type Ia supernovae hiding behind large galaxy clusters. Astronomers estimate they would need about 20 supernovae, spread out behind a single cluster, to create a map of an entire cluster of galaxies.

They are optimistic Hubble and future telescopes, such as NASA’s James Webb Space Telescope, will identify more of these unique exploding stars.

The CLASH team’s results will appear in the May 1 issue of The Astrophysical Journal and the Supernova Cosmology Project’s findings will be published in the May 1 edition of the Monthly Notices of the Royal Astronomical Society.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 28, 2014

News: U.S. has lost track of weapons given to Afghanistan - The United States supplied almost three quarter of a million weapons to Afghanistan’s army and police since 2004, but the military cannot track where many of those arms have gone, a new report found. Bill to improve VA has $17 billion price tag - A bipartisan...
 
 

News Briefs July 28, 2014

Marines seek authorization for dolphin deaths The Marine Corps is asking for a five-year authorization from the National Marine Fisheries Service for incidental deaths of bottlenose dolphins during training exercises at a bombing and target range. The Sun Journal of New Bern, N.C., reports that Connie Barclay of the National Oceanic and Atmospheric Administration says...
 
 
Army photograph by David Vergun

Senior leaders explain Army’s drawdown plan

Army photograph by David Vergun No commander is happy when notified that a soldier from his or her command has been identified for early separation. But commanders personally notify those Soldiers and ensure participation in th...
 

 

Northrop Grumman awarded mission support services contract

The U.S. Army awarded Northrop Grumman a cost-plus-fixed-fee contract, with a potential value of $205 million, to continue providing mission logistics services in support of combat brigades training at the National Training Center in Fort Irwin, Calif. The contract covers one base year and two one-year options. Support will include the full range of mission...
 
 
Lockheed Martin photograph by Beth Groom

F-35 Rollout Marks U.S.-Australia Partnership Milestone

Lockheed Martin photograph by Beth Groom Royal Australian Air Force Air Marshal Geoff Brown delivers his remarks at the roll out ceremony for Australia’s first F-35. The official rollout of the first two F-35 Lightning II...
 
 
NASA/JPL-Caltech image

NASA’s Mars spacecraft maneuvers to prepare for close comet flyby

NASA/JPL-Caltech image This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 m...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>