Space

May 2, 2014

NASA’s carbon-counting spacecraft arrives at launch site

A truck convoy carrying NASA’s Orbiting Carbon Observatory-2 spacecraft arrives at California’s Vandenberg Air Force Base on April 30. The observatory will undergo final tests in preparation for a planned July 1 launch.

A NASA spacecraft designed to make precise measurements of carbon dioxide in Earth’s atmosphere is at Vandenberg Air Force Base, Calif., to begin final preparations for launch.

The Orbiting Carbon Observatory-2 arrived Wednesday at its launch site on California’s central coast after travelling from Orbital Sciences Corp.’s Satellite Manufacturing Facility in Gilbert, Ariz. The spacecraft now will undergo final tests and then be integrated on top of a United Launch Alliance Delta II rocket in preparation for a planned July 1 launch.

The observatory is NASA’s first satellite mission dedicated to studying carbon dioxide, a critical component of Earth’s carbon cycle that is the leading human-produced greenhouse gas driving changes in Earth’s climate. It replaces a nearly identical spacecraft lost due to a rocket launch mishap in February 2009.

OCO-2 will provide a new tool for understanding both the sources of carbon dioxide emissions and the natural processes that remove carbon dioxide from the atmosphere and how they are changing over time. Since the start of the Industrial Revolution more than 200 years ago, the burning of fossil fuels, as well as other human activities, have led to an unprecedented  buildup in this  greenhouse gas, which is now at its highest level in at least 800,000 years. Human activities have increased the level of carbon dioxide by more than 25 percent in just the past half century.

Greenhouse gases, such as carbon dioxide, trap the sun’s heat within Earth’s atmosphere, warming it and keeping it at habitable temperatures. However, scientists have concluded that increases in carbon dioxide resulting from human activities have thrown Earth’s natural carbon cycle off balance, increasing global temperatures and changing the planet’s climate.

While scientists understand carbon dioxide emissions resulting from burning fossil fuels and can estimate their quantity quite accurately, their understanding of carbon dioxide from other human-produced and natural sources is relatively less quantified. Atmospheric measurements collected at ground stations indicate less than half of the carbon dioxide humans emit into the atmosphere stays there. The rest is believed to be absorbed by the ocean and plants on land.

But the locations and identity of the natural “sinks” absorbing this carbon dioxide currently are not well understood. OCO-2 will help solve this critical scientific puzzle. Quantifying how the natural processes are helping remove carbon from the atmosphere will help scientists construct better models to predict how much carbon dioxide these sinks will be able to absorb in the future.

The mission’s innovative technologies will enable space-based measurements of atmospheric carbon dioxide with the sensitivity, resolution and coverage needed to characterize the sources of carbon dioxide emissions and the natural sinks that moderate their buildup, at regional scales, everywhere on Earth. The mission’s data will help scientists reduce uncertainties in forecasts of how much carbon dioxide is in the atmosphere and improve the accuracy of global climate change predictions.

In addition to measuring carbon dioxide, OCO-2 will monitor the “glow” of the chlorophyll contained within plants, a phenomenon known as solar-induced chlorophyll fluorescence, opening up potential new applications for studying vegetation on land. NASA researchers, in collaboration with Japanese and other international colleagues, have discovered that data from Japan’s GOSAT (Greenhouse gases observing SATellite, also known as Ibuki in Japan), along with other satellites, including OCO-2, can help monitor this “signature” of photosynthesis on a global scale.

The observatory will fly in a 438-mile (705-kilometer) altitude, near-polar orbit in formation with the five other satellites that are part of the Afternoon, or “A-Train” Constellation. This international constellation of Earth-observing satellites circles Earth once every 98 minutes in a sun-synchronous orbit that crosses the equator near 1:30 p.m. local time and repeats the same ground track every 16 days. OCO-2 will be inserted at the head of the A-Train. Once in this orbit, OCO-2 is designed to operate for at least two years. This coordinated flight formation will enable researchers to correlate OCO-2 data with data from other NASA and partner spacecraft.

OCO-2 is a NASA Earth System Science Pathfinder Program mission managed by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., for NASA’s Science Mission Directorate in Washington. Orbital built the spacecraft and provides mission operations under JPL’s leadership. The science instrument was built by JPL, based on the instrument design co-developed for the original OCO mission by Hamilton Sundstrand in Pomona, Calif. NASA’s Launch Services Program at NASA’s Kennedy Space Center in Florida is responsible for launch management. JPL is managed for NASA by the California Institute of Technology in Pasadena. Calif.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 2, 2014

News: Debris yields clues that pilot never ejected - When investigators were finally able to safely enter the crash site of an F-15C “Eagle” fighter jet on the afternoon of Aug. 27, they made a grim discovery that concluded more than 30 hours of searching – the pilot never managed to eject from the aircraft.  ...
 
 

News Briefs September 2, 2014

Pentagon: Iraq operations cost $560 million so far U.S. military operations in Iraq, including airstrikes and surveillance flights, have cost about $560 million since mid-June, the Pentagon said Aug. 29. Rear Adm. John Kirby, the Pentagon press secretary, said the average daily cost has been $7.5 million. He said it began at a much lower...
 
 

Unmanned aircraft partnership reaches major milestone

A team of research students and staff from Warsaw University of Technology have successfully demonstrated the first phase of flight test and integration of unmanned aircraft platforms with an autonomous mission control system. The demonstration marks a significant milestone in a partnership between the university and Lockheed Martin that began earlier this year. This is...
 

 

Raytheon delivers first Block 2 Rolling Airframe Missiles to US Navy

Raytheon delivered the first Block 2 variant of its Rolling Airframe Missile system to the U.S. Navy as part of the company’s 2012 Low Rate Initial Production contract. RAM Block 2 is a significant performance upgrade featuring enhanced kinematics, an evolved radio frequency receiver, and an improved control system. “As today’s threats continue to evolve,...
 
 
Courtesy photograph

Two Vietnam War Soldiers, one from Civil War to receive Medal of Honor

U.S. Army graphic Retired Command Sgt. Maj. Bennie G. Adkins and former Spc. 4 Donald P. Sloat will receive the Medal of Honor for actions in Vietnam. The White House announced Aug. 26 that Retired Command Sgt. Maj. Bennie G. A...
 
 

Sparks fly as NASA pushes limits of 3-D printing technology

NASA has successfully tested the most complex rocket engine parts ever designed by the agency and printed with additive manufacturing, or 3-D printing, on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Ala. NASA engineers pushed the limits of technology by designing a rocket engine injector – a highly complex part that...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>