Space

May 7, 2014

Chandra Observatory delivers new insight into formation of star clusters

nasa-chandra
Using data from NASA’s Chandra X-ray Observatory and infrared telescopes, astronomers have made an important advance in the understanding of how clusters of stars come into being.

The data show early notions of how star clusters are formed cannot be correct. The simplest idea is stars form into clusters when a giant cloud of gas and dust condenses. The center of the cloud pulls in material from its surroundings until it becomes dense enough to trigger star formation. This process occurs in the center of the cloud first, implying that the stars in the middle of the cluster form first and, therefore, are the oldest.

However, the latest data from Chandra suggest something else is happening. Researchers studied two clusters where sun-like stars currently are forming ñ NGC 2024, located in the center of the Flame Nebula, and the Orion Nebula Cluster. From this study, they discovered the stars on the outskirts of the clusters actually are the oldest.

“Our findings are counterintuitive,” said Konstantin Getman of Penn State University, who led the study. “It means we need to think harder and come up with more ideas of how stars like our sun are formed.”

Getman and his colleagues developed a new two-step approach that led to this discovery. First, they used Chandra data on the brightness of the stars in X-rays to determine their masses. Then they determined how bright these stars were in infrared light using ground-based telescopes and data from NASA’s Spitzer Space Telescope. By combining this information with theoretical models, the ages of the stars throughout the two clusters were estimated.

The results were contrary to what the basic model predicted. At the center of NGC 2024, the stars were about 200,000 years old, while those on the outskirts were about 1.5 million years in age. In the Orion Nebula, star ages ranged from 1.2 million years in the middle of the cluster to almost 2 million years near the edges.

“A key conclusion from our study is we can reject the basic model where clusters form from the inside out,” said co-author Eric Feigelson, also of Penn State. “So we need to consider more complex models that are now emerging from star formation studies.”

Explanations for the new findings can be grouped into three broad notions. The first is star formation continues to occur in the inner regions because the gas in the inner regions of a star-forming cloud is denser — contains more material from which to build stars — than the more diffuse outer regions. Over time, if the density falls below a threshold where it can no longer collapse to form stars, star formation will cease in the outer regions, whereas stars will continue to form in the inner regions, leading to a concentration of younger stars there.

Another idea is old stars have had more time to drift away from the center of the cluster, or be kicked outward by interactions with other stars. One final notion is the observations could be explained if young stars are formed in massive filaments of gas that fall toward the center of the cluster.

Previous studies of the Orion Nebula Cluster revealed hints of this reversed age spread, but these earlier efforts were based on limited or biased star samples. This latest research provides the first evidence of such age differences in the Flame Nebula.
“The next steps will be to see if we find this same age range in other young clusters,” said Penn State graduate student Michael Kuhn, who also worked on the study.

These results will be published in two separate papers in The Astrophysical Journal and are available online. They are part of the MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project led by Penn State astronomers.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra’s science and flight operations.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines March 2, 2015

News: Israel lobbies for more missile defense funds than Obama sought - For the second consecutive year, Israeli officials have asked the U.S. Congress to add more than $300 million to President Barack Obama’s budget request for their nation’s missile-defense programs.   Business: Inside one of the most intense, and unusual, Pentagon contracting wars - The much-anticipated...
 
 

News Briefs March 2, 2015

Italy resumes Navy exercise amid new tensions over Libya The Italian Navy is resuming exercises in the Mediterranean Sea, including near the coast of Libya, amid concerns about rapidly deteriorating security in the North African nation. The exercise began March 2 and includes anti-submarine, anti-aircraft and anti-ship training operations. The exercise was suspended for a...
 
 
LM-AEHF

Ingenuity drives Lockheed’s AEHF program to production milestone early

Lockheed Martin has successfully integrated the propulsion core and payload module for the fourth Advanced Extremely High Frequency (AEHF) satellite nearly five months ahead of schedule. Reaching this critical milestone early a...
 

 

First all-electric propulsion satellites send first on-orbit signals

Two Boeing 702SP (small platform) satellites, the first all-electric propulsion satellites to launch, have sent initial signals from space, marking the first step toward ABS, based in Bermuda, and Eutelsat, based in Paris, being able to provide enhanced communication services to their customers. Whatís more, the satellites were launched as a conjoined stack on a...
 
 

GA-ASI, Sener team to offer Predator B to Spain

General Atomics Aeronautical Systems, Inc. and SENER, a leading Spanish engineering company, announced March 2 that they have signed a teaming agreement that promotes the use of the multi-mission Predator B® RPA to support Spain’s airborne surveillance and reconnaissance requirements.  GAASI is a leading manufacturer of Remotely Piloted Aircraft systems, radars, and electro-optic and relate...
 
 
raytheon-satellite

Raytheon’s ‘Blue Marble’ imaging sensor delivered on schedule

Raytheon has delivered a second Visible Infrared Imaging Radiometer Suite instrument to support the National Oceanic and Atmospheric Administration’s Joint Polar Satellite System mission. The second VIIRS unit will fly ab...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>