Space

May 7, 2014

Chandra Observatory delivers new insight into formation of star clusters

nasa-chandra
Using data from NASA’s Chandra X-ray Observatory and infrared telescopes, astronomers have made an important advance in the understanding of how clusters of stars come into being.

The data show early notions of how star clusters are formed cannot be correct. The simplest idea is stars form into clusters when a giant cloud of gas and dust condenses. The center of the cloud pulls in material from its surroundings until it becomes dense enough to trigger star formation. This process occurs in the center of the cloud first, implying that the stars in the middle of the cluster form first and, therefore, are the oldest.

However, the latest data from Chandra suggest something else is happening. Researchers studied two clusters where sun-like stars currently are forming ñ NGC 2024, located in the center of the Flame Nebula, and the Orion Nebula Cluster. From this study, they discovered the stars on the outskirts of the clusters actually are the oldest.

“Our findings are counterintuitive,” said Konstantin Getman of Penn State University, who led the study. “It means we need to think harder and come up with more ideas of how stars like our sun are formed.”

Getman and his colleagues developed a new two-step approach that led to this discovery. First, they used Chandra data on the brightness of the stars in X-rays to determine their masses. Then they determined how bright these stars were in infrared light using ground-based telescopes and data from NASA’s Spitzer Space Telescope. By combining this information with theoretical models, the ages of the stars throughout the two clusters were estimated.

The results were contrary to what the basic model predicted. At the center of NGC 2024, the stars were about 200,000 years old, while those on the outskirts were about 1.5 million years in age. In the Orion Nebula, star ages ranged from 1.2 million years in the middle of the cluster to almost 2 million years near the edges.

“A key conclusion from our study is we can reject the basic model where clusters form from the inside out,” said co-author Eric Feigelson, also of Penn State. “So we need to consider more complex models that are now emerging from star formation studies.”

Explanations for the new findings can be grouped into three broad notions. The first is star formation continues to occur in the inner regions because the gas in the inner regions of a star-forming cloud is denser — contains more material from which to build stars — than the more diffuse outer regions. Over time, if the density falls below a threshold where it can no longer collapse to form stars, star formation will cease in the outer regions, whereas stars will continue to form in the inner regions, leading to a concentration of younger stars there.

Another idea is old stars have had more time to drift away from the center of the cluster, or be kicked outward by interactions with other stars. One final notion is the observations could be explained if young stars are formed in massive filaments of gas that fall toward the center of the cluster.

Previous studies of the Orion Nebula Cluster revealed hints of this reversed age spread, but these earlier efforts were based on limited or biased star samples. This latest research provides the first evidence of such age differences in the Flame Nebula.
“The next steps will be to see if we find this same age range in other young clusters,” said Penn State graduate student Michael Kuhn, who also worked on the study.

These results will be published in two separate papers in The Astrophysical Journal and are available online. They are part of the MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project led by Penn State astronomers.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra’s science and flight operations.




All of this week's top headlines to your email every Friday.


 
 

 
Air Force photograph by MSgt. Chuck Marsh

‘NORAD Tracks Santa’: Bringing him to a home near you

Air Force photograph by MSgt. Chuck Marsh Volunteers monitor phones and computers to talk with children while tracking Santa Claus at the North American Aerospace Defense Command Tracks Santa Operations Center at Peterson Air F...
 
 

Headlines December 24, 2014

Business: Boeing, U.S. Navy in talks about stretching EA-18G jet production - The U.S. Navy Dec. 19 said it was in talks with Boeing Co about slowing production of its EA-18G electronic attack jets to keep the St. Louis facility running through the end of 2017, after Congress approved funding for 15 more planes. Navy’s $2.5...
 
 

News Briefs December 24, 2014

Chinese military plane crashes; two deaths reported A Chinese military plane crashed in the country’s northwest Dec. 22 and a news website says at least two people were killed. The plane crashed at about 3 p.m. near the city of Weinan, about 600 miles west of Beijing, in Shaanxi province, according to the local fire...
 

 
LM-exoskeleton

Lockheed Martin’s exoskeleton wins design awards, honors

Lockheed Martin’s FORTIS exoskeleton received several accolades in 2014 highlighting its innovative technology design and its benefit to users in an industrial setting. This year, FORTIS was recognized with a Gold Spark Award...
 
 

DOD releases 2015 military pay, compensation rates

Dec. 22, the Department of Defense announced the 2015 military pay and compensation rates for service members, with most service members receiving a one percent increase in basic pay. The new rates for basic pay, basic allowance for housing, basic allowance for subsistence, and the cost of living allowance rates for the contiguous United States...
 
 

Astronics to scquire Armstrong Aerospace

Astronics Corporation, a leading provider of advanced technologies for the global aerospace and defense industries, announced today that it has entered into a definitive agreement to acquire Armstrong Aerospace for approximately $51 million. The agreement is expected to close in January 2015, subject to normal closing requirements. Armstrong Aerospace, located in Itasca, Illinois, is a...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>