Space

May 7, 2014

Propulsion module for Lockheed Martin-built SBIRS GEO-4 satellite completed

SBIRS GEO Shown here is an artist’s rendering of a SBRIS GEO spacecraft. SBIRS GEO satellites include highly sophisticated scanning and staring sensors that deliver improved infrared sensitivity and a reduction in area revisit times over the current constellation. The scanning sensor provides a wide area surveillance of missile launches and natural phenomena across the earth, while the staring sensor can be tasked to observe smaller areas of interest with superior sensitivity.

Lockheed Martin has completed the propulsion module for the fourth Space-Based Infrared System (SBIRS) Geosynchronous Earth Orbit (GEO-4) space vehicle and is now proceeding with satellite assembly, integration and test.

SBIRS provides our nation with continuous early warning of ballistic missile launches and other tactical intelligence.

Final assembly and test of the GEO-4 satellite’s propulsion module occurred earlier this year at Lockheed Martin’s Mississippi Space & Technology Center at the John C. Stennis Space Center. The propulsion module maneuvers the satellite during transfer orbit to its final location and conducts on-orbit repositioning maneuvers throughout its mission life.

The completed propulsion module shipped to the company’s Sunnyvale, Calif., facility, where the satellite power and avionics boxes will be added prior to installing the mission payload that will be delivered by Northrop Grumman later this year.

“This is a significant production milestone for the fourth GEO satellite and further demonstrates our commitment to delivering SBIRS’ unprecedented capabilities to our nation,” said Jeffrey Smith, vice president of Lockheed Martin’s Overhead Persistent Infrared (OPIR) mission area. “We are now seeing the efficiency benefits from full production on the SBIRS program and look forward to delivering GEO-4 to the U.S. Air Force in 2015.”

The SBIRS program delivers timely, reliable and accurate missile warning and infrared surveillance information to the President of the United States, the Secretary of Defense, combatant commanders, the intelligence community and other key decision makers. The system enhances global missile launch detection capability, supports the nation’s ballistic missile defense system, expands the country’s technical intelligence gathering capacity and bolsters situational awareness for warfighters on the battlefield.

The SBIRS architecture includes a resilient mix of satellites in GEO, hosted payloads in Highly Elliptical Orbit (HEO) orbit, and ground hardware and software. The GEO-1 satellite received Air Force Space Command Operational Acceptance on May 21, 2013. GEO-2 was declared operational Nov. 25, 2013, just eight months after its launch from Cape Canaveral Air Force Station, with performance that matches, and in some cases exceeds requirements.

The SBIRS GEO-3 satellite is preparing for acoustic and thermal vacuum testing, and is on schedule for delivery to the Air Force by the end of 2014. Lockheed Martin is also currently under contract for GEO-5 and GEO-6 long-lead parts procurement.

The SBIRS team is led by the Infrared Space Systems Directorate at the U.S. Air Force Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin is the SBIRS prime contractor, Northrop Grumman is the payload integrator. Air Force Space Command operates the SBIRS system.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by David Olive

NASA completes successful battery of tests on composite cryotank

https://www.youtube.com/embed/qkGI6JeNY0E?enablejsapi=1&rel=0 NASA photograph by David Olive One of the largest composite cryotanks ever built recently completed a battery of tests at NASA’s Marshall Space Flight Cen...
 
 
NASA/MSFC image

NASA completes key review of world’s most powerful rocket

NASA/MSFC image Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimate...
 
 
Image courtesy of NASA, Z. Levay, G. Bacon (STScI)

NASA telescopes uncover early construction of giant galaxy

Image courtesy of NASA, Z. Levay, G. Bacon (STScI) Artist impression of a firestorm of star birth deep inside core of young, growing elliptical galaxy. Astronomers have for the first time caught a glimpse of the earliest stages...
 

 

Lockheed Martin, Electro Optic Systems to establish space debris tracking site

Under a new strategic cooperation agreement, Lockheed Martin and Electro Optic Systems Pty Ltd are developing a new space object tracking site in Western Australia that will paint a more detailed picture of space debris for both government and commercial customers. The site will use a combination of lasers and sensitive optical systems like those...
 
 

NASA awards research facilities, engineering support services contract

NASA has awarded a contract for research facilities and engineering support services to InuTeq, LLC of Greenbelt, Maryland, in support of the Mission Information and Test Systems Directorate at NASA’s Armstrong Flight Research Center, Edwards, Calif. This cost-plus-award-fee contract covers a one-year base period beginning Nov. 1, 2014 and four one-year options, and is valued...
 
 

NASA awards contract option on test, operations support contract

NASA has exercised the first option to extend the period of performance of its Test and Operations Support Contract with Jacobs Technology Inc. of Tullahoma, Tenn., to Sept. 30, 2016. Jacobs Technology Inc. will provide continued overall management and implementation of ground systems capabilities, flight hardware processing and launch operations in support of the International...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>