Space

May 7, 2014

Propulsion module for Lockheed Martin-built SBIRS GEO-4 satellite completed

SBIRS GEO Shown here is an artist’s rendering of a SBRIS GEO spacecraft. SBIRS GEO satellites include highly sophisticated scanning and staring sensors that deliver improved infrared sensitivity and a reduction in area revisit times over the current constellation. The scanning sensor provides a wide area surveillance of missile launches and natural phenomena across the earth, while the staring sensor can be tasked to observe smaller areas of interest with superior sensitivity.

Lockheed Martin has completed the propulsion module for the fourth Space-Based Infrared System (SBIRS) Geosynchronous Earth Orbit (GEO-4) space vehicle and is now proceeding with satellite assembly, integration and test.

SBIRS provides our nation with continuous early warning of ballistic missile launches and other tactical intelligence.

Final assembly and test of the GEO-4 satellite’s propulsion module occurred earlier this year at Lockheed Martin’s Mississippi Space & Technology Center at the John C. Stennis Space Center. The propulsion module maneuvers the satellite during transfer orbit to its final location and conducts on-orbit repositioning maneuvers throughout its mission life.

The completed propulsion module shipped to the company’s Sunnyvale, Calif., facility, where the satellite power and avionics boxes will be added prior to installing the mission payload that will be delivered by Northrop Grumman later this year.

“This is a significant production milestone for the fourth GEO satellite and further demonstrates our commitment to delivering SBIRS’ unprecedented capabilities to our nation,” said Jeffrey Smith, vice president of Lockheed Martin’s Overhead Persistent Infrared (OPIR) mission area. “We are now seeing the efficiency benefits from full production on the SBIRS program and look forward to delivering GEO-4 to the U.S. Air Force in 2015.”

The SBIRS program delivers timely, reliable and accurate missile warning and infrared surveillance information to the President of the United States, the Secretary of Defense, combatant commanders, the intelligence community and other key decision makers. The system enhances global missile launch detection capability, supports the nation’s ballistic missile defense system, expands the country’s technical intelligence gathering capacity and bolsters situational awareness for warfighters on the battlefield.

The SBIRS architecture includes a resilient mix of satellites in GEO, hosted payloads in Highly Elliptical Orbit (HEO) orbit, and ground hardware and software. The GEO-1 satellite received Air Force Space Command Operational Acceptance on May 21, 2013. GEO-2 was declared operational Nov. 25, 2013, just eight months after its launch from Cape Canaveral Air Force Station, with performance that matches, and in some cases exceeds requirements.

The SBIRS GEO-3 satellite is preparing for acoustic and thermal vacuum testing, and is on schedule for delivery to the Air Force by the end of 2014. Lockheed Martin is also currently under contract for GEO-5 and GEO-6 long-lead parts procurement.

The SBIRS team is led by the Infrared Space Systems Directorate at the U.S. Air Force Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin is the SBIRS prime contractor, Northrop Grumman is the payload integrator. Air Force Space Command operates the SBIRS system.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines March 2, 2015

News: Israel lobbies for more missile defense funds than Obama sought - For the second consecutive year, Israeli officials have asked the U.S. Congress to add more than $300 million to President Barack Obama’s budget request for their nation’s missile-defense programs.   Business: Inside one of the most intense, and unusual, Pentagon contracting wars - The much-anticipated...
 
 

News Briefs March 2, 2015

Italy resumes Navy exercise amid new tensions over Libya The Italian Navy is resuming exercises in the Mediterranean Sea, including near the coast of Libya, amid concerns about rapidly deteriorating security in the North African nation. The exercise began March 2 and includes anti-submarine, anti-aircraft and anti-ship training operations. The exercise was suspended for a...
 
 
LM-AEHF

Ingenuity drives Lockheed’s AEHF program to production milestone early

Lockheed Martin has successfully integrated the propulsion core and payload module for the fourth Advanced Extremely High Frequency (AEHF) satellite nearly five months ahead of schedule. Reaching this critical milestone early a...
 

 

First all-electric propulsion satellites send first on-orbit signals

Two Boeing 702SP (small platform) satellites, the first all-electric propulsion satellites to launch, have sent initial signals from space, marking the first step toward ABS, based in Bermuda, and Eutelsat, based in Paris, being able to provide enhanced communication services to their customers. Whatís more, the satellites were launched as a conjoined stack on a...
 
 

GA-ASI, Sener team to offer Predator B to Spain

General Atomics Aeronautical Systems, Inc. and SENER, a leading Spanish engineering company, announced March 2 that they have signed a teaming agreement that promotes the use of the multi-mission Predator B® RPA to support Spain’s airborne surveillance and reconnaissance requirements.  GAASI is a leading manufacturer of Remotely Piloted Aircraft systems, radars, and electro-optic and relate...
 
 
raytheon-satellite

Raytheon’s ‘Blue Marble’ imaging sensor delivered on schedule

Raytheon has delivered a second Visible Infrared Imaging Radiometer Suite instrument to support the National Oceanic and Atmospheric Administration’s Joint Polar Satellite System mission. The second VIIRS unit will fly ab...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>