Space

May 16, 2014

NASA’s newest wind watcher arrives at launch site

Components of NASA’s International Space Station-RapidScat instrument rest side by side in Kennedy Space Center’s Space Station Processing Facility after arrival. ISS-RapidScat will measure Earth’s ocean surface wind speed and direction from the station, data that will be used for weather and marine forecasting.

A new NASA Earth-observing mission that will measure ocean winds from the International Space Station has arrived at NASAís Kennedy Space Center in Florida to begin final preparations for launch.

The International Space Station-RapidScat scatterometer instrument arrived May 12 after a cross-country trip from NASAís Jet Propulsion Laboratory in Pasadena, Calif. The instrument, built at JPL, now will undergo final tests before being stowed aboard a SpaceX Dragon commercial cargo resupply spacecraft. The Dragon will launch on a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station, Florida, no earlier than August.

ISS-RapidScat is NASA’s first scientific Earth-observing instrument specifically designed and developed to operate from the exterior of the space station. It will measure near-surface ocean wind speed and direction in Earthís low and middle latitudes during its two-year mission. Its data will be used to support weather and marine forecasting, including tracking storms and hurricanes, as well as climate studies.

Winds over the ocean are a critical factor in determining regional weather patterns and studying climate. High winds in severe storms also can inflict major damage to shore populations and shipping. In some regions, ocean winds drive warm surface ocean waters away from coastlines, causing nutrient-rich deep water to rise to the surface, where they provide a major source of food for coastal fisheries. Changes in ocean winds also help us monitor large-scale changes in Earthís climate variations, such as El Nino and La Nina.

Since 1999, NASAís QuikScat satellite, along with satellites operated by international partners, has provided ocean surface winds information for use by the science and operational weather forecasting communities. In 2009, after 10 years of successful operations, QuikScatís scatterometer instrument stopped providing ocean wind data.

Scatterometers are radar sensors that bounce microwaves off the ocean surface and measure the strength and direction of the echoes that return. The echoes are scattered by the presence of wind-driven waves on the ocean surface. ISS-RapidScat will help fill the gap left by the loss of these data and will extend a 15-year ocean wind climate record.

ISS-RapidScatís berth on the space station will put it in an orbit that is unique from any other wind-measuring instrument currently in space. This orbit, with an altitude that varies from 233 to 270 miles (375 to 435 kilometers), will give scientists the first near-global direct observations of how ocean winds vary over the course of the day, while adding extra eyes in the tropics and midlatitudes to track the formation and movement of tropical cyclones. Its 560-mile-wide (900-kilometer) observation swath creates a map of winds over most of the ocean between 51.6 degrees north and south of the equator every 48 hours.

ISS-RapidScat also will extend the continuity and usefulness of the scatterometer data record from the international constellation of ocean wind satellites. Currently, satellites in the constellation observe at different times of the day. Using the space stationís orbit, it will be possible for ISS-RapidScat to observe areas where the orbits of the other scatterometers in the constellation intersect at the same time. This capacity will allow scientists to correct for previously unknown relative errors between the different wind satellites and extend QuikScatís 10-plus-year record to create a continuous record.

ISS-RapidScat was developed in just a year-and-a-half, at roughly one-tenth the cost of developing a traditional satellite mission. Its development approach leverages space station capabilities and a combination of new industrial-grade hardware and older inherited hardware used to develop and test QuikScat. Additional cost savings are achieved by launching the instrument aboard a scheduled space station cargo resupply mission.

After arriving at the space station, ISS-RapidScat will be installed on the external payload facility on the Columbus module using the stationís robotic arm. The arm will be controlled from the ground during installation. ISS-RapidScat is an autonomous payload, requiring no interaction from station crew members.

ISS-RapidScat is a partnership between JPL and the International Space Station Program Office at NASA’s Johnson Space Center in Houston, with support from the Earth Science Division of NASAís Science Mission Directorate in Washington. Other mission partners include Kennedy; NASAís Marshall Space Flight Center in Huntsville, Alabama; the European Space Agency; and SpaceX. JPL is managed for NASA by the California Institute of Technology in Pasadena.

For more information about ISS-RapidScat, visit:
http://winds.jpl.nasa.gov/missions/RapidScat/

NASA monitors Earthís vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earthís interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

ISS-RapidScat is the third of five NASA Earth science missions scheduled to be launched this year, the most new NASA Earth-observing mission launches in the same year in more than a decade. For more information about NASA’s Earth science activities in 2014, visit:
http://www.nasa.gov/earthrightnow

For more information about the International Space Station, visit:
http://www.nasa.gov/station




All of this week's top headlines to your email every Friday.


 
 

 

Headlines October 1, 2014

Veterans: Substantial VA staff will face discipline - A substantial number of VA employees will face punishment for the veterans treatment scandal, the new national commander of the American Legion predicted Sept. 30, indicating that the slow pace of discipline has more to do with the hoops the department must jump through than it does a...
 
 

News Briefs October 1, 2014

Egypt president gives army control of arms imports The Egyptian president has amended a law, giving the country’s army control over weapons and ammunition imports. The Sept. 30 statement from the presidency says Abdel-Fattah el-Sissi changed articles stipulating that a permit for weapons’ imports has to be granted by the Interior Ministry, which is in...
 
 
atk-test

ATK successfully tests Orion launch abort motor igniter

NASA and ATK successfully completed a static test of the launch abort motor igniter for the Orion crew capsule’s Launch Abort System. Conducted at ATK’s facility in Promontory, Utah, this test is the next step towa...
 

 
uav-coalition

Small UAV coalition launched to advance commercial use of unmanned aerial vehicles

Leading technology companies Oct. 1 formally announced the formation of the Small UAV Coalition to help pave the way for commercial, philanthropic, and civil use of small unmanned aerial vehicles in the United States and abroad...
 
 
Navy photograph

NAWCWD manned for unmanned systems

Navy photograph A rail launch is performed during Integrator unmanned aerial vehicle testing at Naval Air Warfare Center Weapons Division China Lake, Calif. Naval Air Warfare Center Weapons Division scientists, engineers, techn...
 
 
NASA photograph by Ken Ulbrich

NASA employees go ‘above and beyond’

Courtesy photograph NASA Chief Scientist Albion Bowers, Christopher Miller and Nelson Brown receive the Exception Engineering Achievement Medal at Armstrong Research Center, Edwards Air Force Base, Calif. The prestigious award ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>