Space

June 4, 2014

NASA, Virgin Galactic announce payloads for SpaceShipTwo flight

Telescopic image of Virgin Galacticís SpaceShipTwo during a supersonic test flight in 2013.

NASA has selected 12 technology experiments to fly on the first commercial research flight on Virgin Galactic’s SpaceShipTwo.

Through NASA’s Flight Opportunities Program within the agency’s Space Technology Mission Directorate, officials have been working with commercial companies, universities and government organizations to coordinate testing of innovative space technologies on research flights through the use of commercial suborbital flight platforms.

“Regular, commercial access to space will change how we approach technology development by allowing us to invest in early research validation,” said Christopher Baker of NASA’s Armstrong Flight Research Center. “The payloads on this flight represent a cross section of promising space exploration technologies that could benefit future NASA missions.”

“Virgin Galactic is thrilled to be working with NASA and researchers at such a range of prestigious institutions, and we look forward to flying these research payloads into space,” said Virgin Galactic CEO George Whitesides. “Our team is working hard to increase access to the space frontier so that many more payloads and people have a chance to experience spaceflight directly.”

The technology payloads scheduled for testing on the first SpaceShipTwo research flight include eight from academic and research institutions:

  • The On-Orbit Propellant Storage Stability investigation by Embry-Riddle Aeronautical University, Daytona Beach, Florida, continues a microgravity research program to determine stability data for a prototype orbiting fuel depot that could enable future long duration space missions.
  • The Electromagnetic Field Measurements payload from John Hopkins University Applied Physics Laboratory, Laurel, Maryland, will characterize the electromagnetic field environment inside the spacecraft. This payload will serve as an integration platform for scientific research and instrument development while providing insight into interference from the spacecraft.
  • The Collisions Into Dust Experiment from the University of Central Florida, Orlando, will fire an impactor into simulated regolith to observe the subsequent behavior of the fine particles ejected in microgravity.† The knowledge of this behavior can help in understanding future operations on asteroids or low gravity moons for scientific study or resource collection.
  • The Validating Telemetric Imaging Hardware for Crew-Assisted and Crew-Autonomous Biological Imaging project from the University of Florida, Gainesville, will test biological fluorescent imaging instrumentation for suborbital applications. Fluorescent protein-based, gene-expression techniques allow direct observation of how biological entities react to the stresses of spaceflight.
  • The Variable Radiator demonstration from Texas A&M University, College Station, partnering with Advanced Cooling Technologies and Jet Learning Laboratory, will test a modulating fluid-based spacecraft thermal energy rejection solution. Fluids behave differently in microgravity; understanding that behavior is critical to the operation of spacecraft radiators and other systems that transfer fluids.
  • A Micro Satellite Attitude Control System from the State University of New York, Buffalo, will test the application of a carpal wrist joint to the momentum management and control of small satellites. Use of the wrist joint to articulate a reaction-control gyroscope should enable precision pointing of a small satellite on multiple axes.
  • The Saturated Fluid Pistonless Pump Technology Demonstrator from the University of Colorado, Boulder, is a cryogenic fuel pump system developed by Flometrics, Inc, which can pump fuel without turbo machinery. This potential advancement for in-space and rocket propellant propulsion would reduce the weight, complexity and cost of spacecraft fuel systems.
  • The Automatic Dependent Surveillance-Broadcast (ADS-B) transmitter is an experimental payload sponsored by the Federal Aviation Administration (FAA) Office of Commercial Space Transportation and based on aviation equipment designed by MITRE Corp. and modified by Embry-Riddle Aeronautical University, Daytona Beach, Florida. ADS-B technology will enable integration of suborbital reusable launch vehicles and stratospheric balloons into the FAAís next-generation air traffic control system.
  • Two industry-developed technology payloads were also selected for testing on the research flight:
  • Made in Space, Inc., Moffett Field, California, has designed an advanced manufacturing experiment intended to feed the development of future 3D printers customized for use in space.
  • Controlled Dynamics, Inc., Huntington Beach, California, has built a Facility for Microgravity Research and Submicroradian Stabilization that is a prototype system using active vibration suppression to increase the quality of microgravity experienced by an attached payload.
  • The first SpaceShipTwo research flight will also provide an opportunity to fly two payloads from NASA centers:
  • Ames Research Center’s Suborbital Flight Environment Monitor is a suite of sensors designed to measure the flight accelerations and microgravity quality achieved.
  • Johnson Space Center’s Microgravity Multi-Phase Flow Experiment for Suborbital Testing will assess the sustained microgravity operation of a two-phase flow system with a passive gas and liquid separator. This technology is applicable to a number of space applications including water purification.

The Flight Opportunities Program is managed at NASA’s Armstrong Flight Research Center at Edwards, Calif. NASA’s Ames Research Center in Moffett Field, Calif., manages the solicitation and selection of technologies to be tested and demonstrated on commercial flight vehicles.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

Fourth Lockheed Martin-built MUOS secure comm satellite shipped

Lockheed Martin photograph On June 28, MUOS-4, the next satellite scheduled to join the U.S. Navy’s Mobile User Objective System secure communications network, shipped to Cape Canaveral from Lockheed Martin’s satellite manu...
 
 
Photograph courtesy of NASA/CXC/U. Wisconsin/S. Heinz

NASA’s Chandra captures x-ray echoes pinpointing distant neutron star

Photograph courtesy of NASA/CXC/U. Wisconsin/S. Heinz A light echo in X-rays detected by NASA’s Chandra X-ray Observatory has provided a rare opportunity to precisely measure the distance to an object on the other side of the...
 
 

Veteran NASA spacecraft nears 60,000th lap around Mars

NASA’s Mars Odyssey spacecraft will reach a major milestone June 23, when it completes its 60,000th orbit since arriving at the Red Planet in 2001. Named after the bestselling novel “2001: A Space Odyssey” by Arthur C. Clarke, Odyssey began orbiting Mars almost 14 years ago, on Oct. 23, 2001. On Dec. 15, 2010, it...
 

 
nasa-study

NASA selects six wild ideas in aviation for further study

NASA has selected six proposals to study transformative ideas that might expand what’s possible in aviation, shifting the boundary between fantastic and futuristic. During a day-long meeting in April, 17 teams pitched the...
 
 
NASA photograph

NASA signs agreement with Space Florida to operate historic landing facility

NASA photograph This aerial photo of the runway at the KSC Shuttle Landing Facility looks north. Longer and wider than most commercial runways, it is 15,000 feet long, with 1,000-foot paved overruns on each end, and 300 feet wi...
 
 

All systems go for NASA’s mission to Jupiter moon Europa

Beyond Earth, Jupiter’s moon Europa is considered one of the most promising places in the solar system to search for signs of present-day life, and a new NASA mission to explore this potential is moving forward from concept review to development. NASA’s mission concept — to conduct a detailed survey of Europa and investigate its...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>