Business

June 6, 2014

Northrop Grumman awarded contract to develop miniaturized inertial navigation system for DARPA

WOODLAND HILLS, Calif. ñ Northrop Grumman has been awarded a contract from the U. S. Army Aviation and Missile Research Development and Engineering Center to develop a miniaturized navigation grade inertial system for the Defense Advanced Research Projects Agency.

DARPA’s Chip-Scale Combinatorial Atomic Navigator (C-SCAN) program aims to integrate micro-electro-mechanical system (MEMS) and atomic inertial guidance technologies into a single inertial measurement unit, providing stable long-term performance with fast start-up time. The integrated navigation system seeks to combine inertial sensors with dissimilar but complementary physics properties, providing an affordable solution in GPS-challenged environments.

Under the cost-plus-fixed-fee contract with an initial value of $648,000, Northrop Grumman will develop a miniaturized inertial measurement unit for the C-SCAN program by combining bulk acoustic wave MEMS gyro and nuclear magnetic resonance (NMR) gyro technologies. This includes maturing the NMR gyro, shrinking the package’s current size and developing a new precision optical accelerometer. The contract has a potential value of $13.4 million with multiple options after the initial 12month base contract.

“This microsystem has the potential to significantly reduce the size, weight, power requirement and cost of precision navigation systems,” said Charles Volk, vice president, Advanced Navigation Systems business unit, Northrop Grumman. “Additionally, the system will reduce dependence on GPS and other external signals, ensuring uncompromised navigation and guidance for war fighters.”

DARPA’s Microsystems Technology Office, which administers the C-SCAN effort, promotes beyond-state-of-the-art technology in the component and microsystems areas. The C-SCAN effort is part of the Micro-Technology for Positioning, Navigation and Timing program that aims to develop micro-technology for self-contained, chip-scale inertial navigation and precision guidance, eliminating dependence on GPS. Potential applications for these advanced navigation sensor chips include targeting, positioning, guidance, navigation and smart weapons.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

Turning up the heat

Lockheed Martin photograph Lockheed Martin ATHENA laser weapon system defeats a truck target by disabling the engine, demonstrating its military effectiveness against enemy ground vehicles. Latest evolution of Lockheed Martin l...
 
 

Sikorsky S-97 RAIDERô team begins final assembly of second aircraft

Sikorsky Aircraft Corp., a subsidiary of United Technologies Corp., announced March 4 the start of final assembly of the second S-97 RAIDERô helicopter at the company’s Development Flight Center. Along with a team of industry suppliers, Sikorsky is developing two RAIDERô prototypes to demonstrate the revolutionary new capabilities in improved maneuverability and flight speed. The...
 
 

Sikorsky awarded $8 million contract for Phase 1 ALIAS program

Sikorsky Aircraft Corp. announced March 4 that the Defense Advanced Research Projects Agency has awarded the company an $8 million contract for Phase 1 of the Aircrew Labor In-Cockpit Automation System program. Sikorsky Aircraft is a subsidiary of United Technologies Corp. The objective of DARPA’s ALIAS program is to develop and insert new automation into...
 

 

Global Hawk sees decrease in cost per flight hour amidst increased operational tempo

The U.S. Air Force RQ-4 Global Hawk high-altitude, long-endurance autonomous unmanned aircraft system had another remarkable year in 2014, with a significant decrease in cost per flight hour coupled with a sharp increase in flight hours. The Global Hawk program has brought the system’s cost per flight hour down to the point of being half...
 
 
LM-AEHF

Ingenuity drives Lockheed’s AEHF program to production milestone early

Lockheed Martin has successfully integrated the propulsion core and payload module for the fourth Advanced Extremely High Frequency (AEHF) satellite nearly five months ahead of schedule. Reaching this critical milestone early a...
 
 

First all-electric propulsion satellites send first on-orbit signals

Two Boeing 702SP (small platform) satellites, the first all-electric propulsion satellites to launch, have sent initial signals from space, marking the first step toward ABS, based in Bermuda, and Eutelsat, based in Paris, being able to provide enhanced communication services to their customers. Whatís more, the satellites were launched as a conjoined stack on a...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>