Defense

June 11, 2014

1st Space Ops assumes space surveillance mission

MSgt. Kevin Williams
Peterson AFB, Colo.

The 1st Space Operations Squadron at Schriever AFB, Colo., will assume command and control of the Geosynchronous Space Situational Awareness Program this summer.

The satellites are a space-based capability that will operate in the near-geosynchronous orbit regime supporting U.S. Strategic Command space surveillance operations as a dedicated Space Surveillance Network sensor.

Gen. William L. Shelton, commander of Air Force Space Command, directed the 1st SOPS to add command and control of GSSAP to the portfolio of Space Situational Awareness systems they control. Those include the Space Based Space Surveillance satellite and the Advanced Technology Risk Reduction satellite.

The first two GSSAP satellites are scheduled to launch July 23, aboard a United Launch Alliance Delta IV booster from Cape Canaveral Air Force Station, Fla. The 1st SOPS will assume operation of GSSAP following launch and initial check-out. The satellites will communicate information through worldwide Air Force Satellite Control Network ground stations to the 1st SOPS where satellite operators will oversee day-to-day operation of the satellites.

“This marks a great milestone for the 1st SOPS and AFSPC,” said Shelton. “With the alignment of the GSSAP mission to the 1st SOPS, we will achieve new synergies within the Space Situational Awareness mission area. Operating the new GSSAP mission alongside our other space-based SSA systems will allow personnel to collaborate across multiple, highly capable SSA systems within the same squadron.”

Brig. Gen. David Buck, AFSPC Director of Air, Space and Cyberspace Operations, noted GSSAP adds a different SSA mission from those currently operated by the 1st SOPS.

“GSSAP will not replace the capabilities that the 1st SOPS currently operates,” said Buck. “SBSS and ATRR operate in low-earth orbits and have different capabilities. GSSAP will be placed in a near-geosynchronous orbit at approximately 22,300 miles above the earth. It will have a very distinct vantage point in relation to the objects it will be observing in geosynchronous orbit. With GSSAP, we will actually be able to characterize an object to a very discriminate level, not just track it.”

Other SSA capabilities operated by for the 1st SOPS include ATRR, which is in a low earth orbit and provides geosynchronous belt surveillance by producing metric observations. SBSS is also in a low earth orbit and provides metric observations as well as Space Object Identification data on satellites operating in geosynchronous orbit.

GSSAP satellites are designed to support Joint Functional Component Command for Space tasking to collect space situational awareness data which will allow for more accurate tracking and characterization of man-made orbiting objects. GSSAP will operate in a near-geosynchronous orbit where it will have a clear, unobstructed and distinct vantage point for viewing resident space objects in the geosynchronous orbit regime without the disruption of weather or atmosphere that can limit ground-based systems. Data from GSSAP will uniquely contribute to timely and accurate orbital predictions, enhance our knowledge of the geosynchronous orbit environment, and further enable space flight safety to include satellite collision avoidance.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 1, 2015

News: Marine F-35 jets deemed ready for combat – A small batch of the highly anticipated – and much criticized – F-35B Joint Strike Fighter jets have been approved for combat by the U.S. Marine Corps.   News: Reports: China to sell J-10 fighter to Iran, Syria? – Iran is rumored external link to be buying 150...
 
 

News Briefs August 3, 2015

Russian military helicopter crashes during air show, one dead A Russian military helicopter crashed Aug. 2 during an aerobatic display, killing one of its crewmembers and injuring another, the Defense Ministry said. The Mi-28 helicopter gunship was part of a flight of helicopters performing aerobatics at the Dubrovichi firing range in Ryazan region, about 170...
 
 
Army photograph by John Andrew Hamilton

Improved Multiple Launch Rocket System tested at White Sands Missile Range

Army photograph by John Andrew Hamilton A Multiple Launch Rocket System with an improved armored cab fires a training rocket during a test. The rockets were simple training rockets and not equipped with a warhead, but still gen...
 

 

Missile Defense Agency, Raytheon demonstrate SM-6’s new anti-ballistic missile defense capability

In a first-of-its-kind test, the U.S. Navy fired a Raytheon Standard Missile-6, intercepting and destroying a short-range ballistic missile target at sea. The successful U.S. Missile Defense Agency test proved a modified SM-6 can eliminate threat ballistic missiles in their final seconds of flight. “SM-6 is the only missile in the world that can do...
 
 

Northrop Grumman-developed stealthy data link validated as combat ready with U.S. Marine Corps

the U.S. Marine Corps achieving F-35B initial operating capability, the Multifunction Advanced Data Link waveform developed by Northrop Grumman has been proven a key combat-ready capability of the F-35 Lightning II program. MADL is a high-data-rate, directional communications link that allows fifth-generation aircraft to communicate and coordinate tactics covertly. During testing of the Lockhee...
 
 

Lockheed Martin technology helps pilots, UAS operators share data, stay safe

As Unmanned Aircraft Systems take to the skies, it is essential for safety that UAS operators and pilots are aware of each other. To help provide this shared situational awareness, Lockheed Martin has deployed the first components of a UAS traffic management system that is available to the UAS community now. Lockheed Martin’s online Flight...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>