Defense

June 11, 2014

Army develops first-of-its kind phase-coherent fiber laser array system

Tags:
Jenna Brady
Adelphi, Md.

Pictured here, a U.S. Army Research Laboratory Fiber Laser Sub-Apertures.

 
The U.S. Army Research Laboratory’s Computational and Information Science Directorate’s Intelligent Optics Team, and partners, recently developed, engineered, demonstrated and delivered the world’s first known working Adaptive Phase Coherent Fiber Laser Array system, which will better enable Soldiers’ directed energy weapons and laser communication systems on the battlefield.

The key members of the Intelligent Optics Team include: Dr. Jiang Liu, electronics engineer, Dr. Leonid Beresnev, physicist, and Gary Carhart, electronics technician, all from CISD’s Atmospheric Sensing Branch.

The development of the system spurred from a collaborative agreement between U.S. Army Research Laboratory, known as ARL, the Defense Advanced Research Projects Agency, the Massachusetts Institute of Technology Lincoln Labs, Optonicus and various academic partners.

ARL’s efforts were central to the recent successful Defense Advanced Research Projects Agency real-world development of a 21-element optical phased array system, of which ARL developed and provided the low-power and high-power fiber subapertures and other key components including control electronics and operation software.

The demonstration was part of the Defense Advanced Research Projects Agency’s Excalibur program, the overall goal of which is to develop coherent optical phased array technologies as an enabler for scalable laser weapons.

The fiber laser array system, developed after more than a decade of research and testing, consists of phase locking and beam combining for multichannel, 7 and 19, fiber laser sub-aperture arrays. An ARL patent and patents related to the system are currently pending.

Pictured here, a U.S. Army Research Laboratory 19-channel Coherent Fiber Laser Array System.

With this phase locking feature and compensation mechanism, physical disturbances such as vibration of the system and atmospheric turbulence will not affect the operation of the laser beams.

The system uses the internal interference feedback of multi-laser beam tails instead of using the conventional beam-splitter sensors placed on the output passage of the laser beams. This allows the system to deliver the same amount of total energy as a monolithic single-aperture laser, but the energy density is multiple times higher at the center of the combined beam.

This architecture allows the system to be dramatically reduced in size, weight and cost by multiple times compared to existing laser weapon systems, all while delivering the same power.

An innovative high-speed control algorithm “Stochastic Parallel Gradient Descent,” is applied to control the beams and their phases coherently in addition to compensating the atmospheric turbulence, maximizing the laser irradiance. An ARL patent for this is pending as well.

In terms of benefits to Soldiers on the battlefield, this one-of-a-kind system is making great strides.

The system architecture will allow for more efficient, more lethal, and more mobile and deployable laser weapon systems, thus it can be widely used by the Army as a directed energy laser weapon system in all platforms including both ground and aerial.

Results of Coherent Beam Combining.

In addition, the output beam of the array can be used as a countermeasure system to quickly and accurately disable and destroy the incoming threat of missiles and other adversary reconnaissance.

“ARL’s coherent fiber laser arrays are the world’s first working devices and directed energy subsystem of its kind. They are the results of the diligent work of ARL researchers, for nearly a decade. I am so proud of our team for achieving such a significant milestone,” said Liu.

“The successful development and delivery of this system demonstrated the innovativeness and capability of ARL as a world-class research organization. ARL is a critical and vital piece in contributing to the nation’s defense research and development,” Liu said.

Future tests of the system will be conducted to reach the ultimate goal of developing a 100-kilowatt-class laser system in a scalable size, weight and power optical phased array configuration compatible with existing weapon system platforms that will further enhance the capabilities of soldiers on the battlefield.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 28, 2014

News: After F-15 jet crash in Virginia, rescue helicopters search for pilot - Helicopters are searching for an Air National Guard pilot after his F-15 jet crashed in the mountains of Virginia this morning, military officials said.   Business: U.S. Air Force 3DELRR contract expected soon - The U.S. Air Force could award the contract for its...
 
 

News Briefs August 28, 2014

Russian directing new offensive in Ukraine The Obama administration believes Russia is leading a new military counteroffensive in Ukraine. U.S. State Department spokeswoman Jen Psaki says Russia has sent additional columns of tanks and armored vehicles into its neighbor’s territory. She says the incursions suggest a ìRussian-directed counteroffensive is likely underway in the contested e...
 
 
LM-C5

Double Deuce

A U.S. Air Force crew ferried the 22nd C-5M Super Galaxy from the Lockheed Martin facilities in Marietta, Ga., Aug. 25. Aircraft 86-0011 was ferried by a crew led by Maj. Gen. Dwyer L. Dennis, Director, Global Reach Programs, O...
 

 
Northrop Grumman photograph

First ever RQ-4 Global Hawk hits 100th flight on NASA mission

Northrop Grumman photograph A historical look at the first Global Hawk (AV1) during its maiden flight over Edwards Air Force Base, Calif., on Feb. 28, 1998. AV1 has made history again with its 100th flight in support of NASA en...
 
 

Northrop Grumman’s CIRCM system completes U.S. Army flight testing

Northrop Grumman’s Common Infrared Countermeasures system recently completed another round of U.S. Army testing by demonstrating its capabilities on a UH-60M Black Hawk helicopter. The flight test was conducted at Redstone Arsenal in Huntsville, Ala., by the Redstone Test Center. The Northrop Grumman CIRCM system was subjected to rigorous conditions over a six-week period, after...
 
 
NASA photograph by David Olive

NASA completes successful battery of tests on composite cryotank

https://www.youtube.com/embed/qkGI6JeNY0E?enablejsapi=1&rel=0 NASA photograph by David Olive One of the largest composite cryotanks ever built recently completed a battery of tests at NASA’s Marshall Space Flight Cen...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>