Defense

June 11, 2014

Army develops first-of-its kind phase-coherent fiber laser array system

Tags:
Jenna Brady
Adelphi, Md.

Pictured here, a U.S. Army Research Laboratory Fiber Laser Sub-Apertures.

 
The U.S. Army Research Laboratory’s Computational and Information Science Directorate’s Intelligent Optics Team, and partners, recently developed, engineered, demonstrated and delivered the world’s first known working Adaptive Phase Coherent Fiber Laser Array system, which will better enable Soldiers’ directed energy weapons and laser communication systems on the battlefield.

The key members of the Intelligent Optics Team include: Dr. Jiang Liu, electronics engineer, Dr. Leonid Beresnev, physicist, and Gary Carhart, electronics technician, all from CISD’s Atmospheric Sensing Branch.

The development of the system spurred from a collaborative agreement between U.S. Army Research Laboratory, known as ARL, the Defense Advanced Research Projects Agency, the Massachusetts Institute of Technology Lincoln Labs, Optonicus and various academic partners.

ARL’s efforts were central to the recent successful Defense Advanced Research Projects Agency real-world development of a 21-element optical phased array system, of which ARL developed and provided the low-power and high-power fiber subapertures and other key components including control electronics and operation software.

The demonstration was part of the Defense Advanced Research Projects Agency’s Excalibur program, the overall goal of which is to develop coherent optical phased array technologies as an enabler for scalable laser weapons.

The fiber laser array system, developed after more than a decade of research and testing, consists of phase locking and beam combining for multichannel, 7 and 19, fiber laser sub-aperture arrays. An ARL patent and patents related to the system are currently pending.

Pictured here, a U.S. Army Research Laboratory 19-channel Coherent Fiber Laser Array System.

With this phase locking feature and compensation mechanism, physical disturbances such as vibration of the system and atmospheric turbulence will not affect the operation of the laser beams.

The system uses the internal interference feedback of multi-laser beam tails instead of using the conventional beam-splitter sensors placed on the output passage of the laser beams. This allows the system to deliver the same amount of total energy as a monolithic single-aperture laser, but the energy density is multiple times higher at the center of the combined beam.

This architecture allows the system to be dramatically reduced in size, weight and cost by multiple times compared to existing laser weapon systems, all while delivering the same power.

An innovative high-speed control algorithm “Stochastic Parallel Gradient Descent,” is applied to control the beams and their phases coherently in addition to compensating the atmospheric turbulence, maximizing the laser irradiance. An ARL patent for this is pending as well.

In terms of benefits to Soldiers on the battlefield, this one-of-a-kind system is making great strides.

The system architecture will allow for more efficient, more lethal, and more mobile and deployable laser weapon systems, thus it can be widely used by the Army as a directed energy laser weapon system in all platforms including both ground and aerial.

Results of Coherent Beam Combining.

In addition, the output beam of the array can be used as a countermeasure system to quickly and accurately disable and destroy the incoming threat of missiles and other adversary reconnaissance.

“ARL’s coherent fiber laser arrays are the world’s first working devices and directed energy subsystem of its kind. They are the results of the diligent work of ARL researchers, for nearly a decade. I am so proud of our team for achieving such a significant milestone,” said Liu.

“The successful development and delivery of this system demonstrated the innovativeness and capability of ARL as a world-class research organization. ARL is a critical and vital piece in contributing to the nation’s defense research and development,” Liu said.

Future tests of the system will be conducted to reach the ultimate goal of developing a 100-kilowatt-class laser system in a scalable size, weight and power optical phased array configuration compatible with existing weapon system platforms that will further enhance the capabilities of soldiers on the battlefield.




All of this week's top headlines to your email every Friday.


 
 

 
Air Force photograph by TSgt. Matt Hecht

Laser-based aircraft countermeasure provides ‘unlimited rounds’ against MANPADS

Air Force photograph by TSgt. Matt Hecht A U.S. Army AH-64 Apache attack helicopter prepares to depart Bagram Air Field, Afghanistan, on Jan 7, 2012. The Apache conducts distributed operations, precision strikes against relocat...
 
 

Navy, Air Force advocate for modernizing combat aviation

Top Navy and Air Force officials today told the House Armed Services subcommittee on tactical air and land forces the president’s budget request for fiscal year 2016 will support modernizing combat aviation programs. Cavy Vice Adm. Paul A. Grosklags, principal military deputy to the assistant secretary of the Navy for research, development and acquisitions; Air...
 
 
Air Force photograph by SrA. Victor J. Caputo

McConnell community marks B-29 rollout

Air Force photograph by SrA. Victor J. Caputo A B-29 Superfortress aircraft, named Doc after its nose art, sit on the flightline March 23, 2015, in Wichita, Kan. Doc will be one of two Superfortresses in the world capable of fl...
 

 

Future USS John Finn launched

The future USS John Finn (DDG 113) was launched at the Huntington Ingalls Industries in Pascagoula, Miss., shipyard March 28. During launch the drydock was flooded allowing the 637-foot floating dock to slowly submerge until the ship was afloat. Once the drydock was fully submerged, the ship was pulled by tugs to HII’s south berth...
 
 
Courtesy photograph

First production QF-16 arrives at Tyndall

Courtesy photograph Maintainers begin post-flight checks on the first Lot 1 production model QF-16 after it arrived at Tyndall Air Force Base, Fla., March 11. The aircraft is the first of 13 deliveries to the 82nd Aerial Target...
 
 
Air Force photograph by A1C Dustin Mullen

E-9A Widget, one of a kind

Air Force photograph by A1C Dustin Mullen An E-9A Widget sits on the flight line in front of hangar 5 Mar. 3 at the 82nd Aerial Target Squadron. The Widget is a modified version of the Bombardier Dash-8, formerly Canadian De Ha...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>