Tech

June 11, 2014

Laser weapon being readied for Marine vehicles

Eric Beidel
Arlington, Va.

As the Navy prepares to deploy its first laser weapon on a ship later this summer, Office of Naval Research officials announced June 11 that they have finished awarding contracts to develop a similar weapon to be used on ground vehicles.

The Ground-Based Air Defense Directed Energy On-the-Move program, commonly referred to as GBAD, aims to provide an affordable alternative to traditional firepower to keep enemy unmanned aerial vehicles from tracking and targeting Marines on the ground.

ONR is working with Naval Surface Warfare Center Dahlgren Division and industry partners on the development of GBAD’s components and subsystems, including the laser itself, beam director, batteries, radar, advanced cooling, and communications and command and control.

“We’re confident we can bring together all of these pieces in a package that’s small enough to be carried on light tactical vehicles and powerful enough to counter these threats,” said Brig. Gen. Kevin Killea, vice chief of naval research and commanding general, the Marine Corps Warfighting Laboratory.

The GBAD system is being designed for use on light tactical vehicles such as the Humvee and Joint Light Tactical Vehicle. With the proliferation of UAV technology, Marine Corps leaders expect that units increasingly will have to defend themselves against adversaries trying to perform reconnaissance and surveillance on them from the air.

“We can expect that our adversaries will increasingly use UAVs and our expeditionary forces must deal with that rising threat,” said Col. William Zamagni, acting head of ONR’s Expeditionary Maneuver Warfare and Combating Terrorism Department. “GBAD gives the Marine Corps a capability to counter the UAV threat efficiently, sustainably and organically with austere expeditionary forces. GBAD employed in a counter UAV role is just the beginning of its use and opens myriad other possibilities for future expeditionary forces.”

The technologies being developed under the GBAD program are a direct response to the Marine Corps Science and Technology Strategic Plan, which calls for a mobile directed-energy weapon capable of destroying threats such as UAVs.

“Aggressive action against air threats is needed for the Marine Air-Ground Task Force to conduct expeditionary maneuver. Everything about this program is geared toward realizing a viable directed-energy capability in support of that objective to allow our Marines to be fast and lethal,” said Lee Mastroianni, program manager for Force Protection in ONR’s Expeditionary Maneuver Warfare and Combating Terrorism Department.

Some of the system’s components already have been used in tests to detect and track UAVs of all sizes. Later in the year, researchers will test the entire system against targets using a 10kW laser as a stepping stone to a 30kW laser.

The 30kW system is expected to be ready for field testing in 2016, when the program will begin more complex trials to ensure a seamless process from detection and tracking to firing, all from mobile tactical vehicles.

The program has benefitted from previous investments, studies and technology development by the Department of Defense High Energy Laser Joint Technology Office, MIT’s Lincoln Laboratory, the Penn State Electro-Optics Center and the U.S. Army Space and Missile Defense Command.

“These partnerships, along with strong support from Marine Corps leadership, are vital as we move forward to see how this capability opens up new frontiers on the battlefield,” Mastroianni said.

All the pieces for the system are being developed under ONR’s Future Naval Capabilities program, which brings proven technology to military acquisition programs in rapid fashion, going from research-and-development to delivery in five years.

ONR provides the science and technology necessary to maintain the Navy and Marine Corps’ technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning and 914 industry partners. ONR employs more than 1,000 people, comprising uniformed, civilian and contract personnel, with additional employees at the Naval Research Lab in Washington, D.C.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph

NASA begins sixth year of airborne Antarctic ice change study

NASA photograph by Michael Studinger NASA’s DC-8 flying laboratory is shown in its parking spot on the ramp at the Aeropuerto Presidente Carlos Ibáñez del Campo in Punta Arenas, Chile, after its transit flight from NASA...
 
 
NASA photograph by Patrick Rogers

Scientific balloon launch highlights NASA exhibit at Balloon Fiesta

NASA photograph by Jay Levine Magdi Said, technology manager for NASA’s Scientific Balloon Program office at NASA’s Wallops Flight Facility, explains elements of NASA’s use of science balloons.   A live t...
 
 
NASA photograph by John Sonntag

Preparing for Antarctic flights in California desert

NASA photograph by John Sonntag The constellation Ursa Major looms over a GPS-equipped survey vehicle and a ground station to its left at El Mirage Dry Lake. By comparing elevation readings from both GPS sources, researchers ca...
 

 
NASA photograph by Tom Tschida

NASA-pioneered Automatic Ground-Collision Avoidance System operational

NASA photograph by Jim Ross The U.S. Air Force’s F-16D Automatic Collision Avoidance Technology (ACAT) test aircraft banks over NASA’s Dryden (now Armstrong) Flight Research Center during a March 2009 flight.  ...
 
 
USF/WHOI/MBARI/NASA image

U.S. initiates prototype system to gauge national marine biodiversity

USF/WHOI/MBARI/NASA image NASA satellite data of the marine environment will be used in prototype marine biodiversity observation networks to be established in four U.S. locations, including the Florida Keys, pictured here. The...
 
 
NASA photograph by David C. Bowman

NASA helicopter test a smashing success

NASA photograph by David C. Bowman Technicians at NASA Langley pulled a helicopter 30 feet into the air before dropping it to test crashworthy systems.   The successful crash test of a former Marine helicopter could help l...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>