Space

June 13, 2014

New NASA space observatory to study carbon conundrums

NASA’s first spacecraft dedicated to measuring carbon dioxide levels in Earth’s atmosphere is in final preparations for a July 1 launch from Vandenberg Air Force Base, Calif.

The Orbiting Carbon Observatory-2 mission will provide a more complete, global picture of the human and natural sources of carbon dioxide, as well as their “sinks,” the natural ocean and land processes by which carbon dioxide is pulled out of Earth’s atmosphere and stored. Carbon dioxide, a critical component of Earth’s carbon cycle, is the leading human-produced greenhouse gas driving changes in Earth’s climate.

“Carbon dioxide in the atmosphere plays a critical role in our planet’s energy balance and is a key factor in understanding how our climate is changing,” said Michael Freilich, director of NASA’s Earth Science Division in Washington. “With the OCO-2 mission, NASA will be contributing an important new source of global observations to the scientific challenge of better understanding our Earth and its future.”

OCO-2 will launch on a United Launch Alliance Delta II rocket and maneuver into a 438-mile altitude, near-polar orbit. It will become the lead satellite in a constellation of five other international Earth monitoring satellites that circle Earth once every 99 minutes and cross the equator each day near 1:36 p.m. local time, making a wide range of nearly simultaneous Earth observations. OCO-2 is designed to operate for at least two years.

The spacecraft will sample the global geographic distribution of the sources and sinks of carbon dioxide and allow scientists to study their changes over time more completely than can be done with any existing data. Since 2009, Earth scientists have been preparing for OCO-2 by taking advantage of observations from the Japanese GOSAT satellite. OCO-2 replaces a nearly identical NASA spacecraft lost because of a rocket launch mishap in February 2009.

At approximately 400 parts per million, atmospheric carbon dioxide is now at its highest level in at least the past 800,000 years. The burning of fossil fuels and other human activities are currently adding nearly 40 billion tons of carbon dioxide to the atmosphere each year, producing an unprecedented buildup in this greenhouse gas.

Greenhouse gases trap the sun’s heat within Earth’s atmosphere, warming the planet’s surface and helping to maintain habitable temperatures from the poles to the equator. Scientists have concluded increased carbon dioxide from human activities, particularly fossil fuel burning and deforestation, has thrown Earth’s natural carbon cycle off balance, increasing global surface temperatures and changing our planet’s climate.

Currently, less than half the carbon dioxide emitted into Earth’s atmosphere by human activities stays there. Some of the remainder is absorbed by Earth’s ocean, but the location and identity of the natural land sinks believed to be absorbing the rest is not well understood. OCO-2 scientists hope to coax these sinks out of hiding and resolve a longstanding scientific puzzle.

“Knowing what parts of Earth are helping remove carbon from our atmosphere will help us understand whether they will keep doing so in the future,” said Michael Gunson, OCO-2 project scientist at NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California. “Understanding the processes controlling carbon dioxide in our atmosphere will help us predict how fast it will build up in the future. Data from this mission will help scientists reduce uncertainties in forecasts of how much carbon dioxide will be in the atmosphere and improve the accuracy of global climate change predictions.”

OCO-2 measurements will be combined with data from ground stations, aircraft and other satellites to help answer questions about the processes that regulate atmospheric carbon dioxide and its role in Earth’s climate and carbon cycle. Mission data will also help assess the usefulness of space-based measurements of carbon dioxide for monitoring emissions.

The observatory’s science instrument features three, high-resolution spectrometers that spread reflected sunlight into its component colors, then precisely measure the intensity of each color. Each spectrometer is optimized to record a different specific color absorbed by carbon dioxide and oxygen molecules in Earth’s atmosphere. The less carbon dioxide in the atmosphere, the more light the spectrometers detect. By analyzing the amount of light, scientists can estimate the relative concentrations of these chemicals.

The new observatory will dramatically increase the number of observations of carbon dioxide, collecting hundreds of thousands of measurements each day when the satellite flies over Earth’s sunlit hemisphere. High-precision, detailed, near-global observations are needed to characterize carbon dioxide’s distribution because the concentration of carbon dioxide varies by only a few percent throughout the year on regional to continental scales. Scientists will analyze the OCO-2 data, using computer models similar to those used to predict the weather, to locate and understand the sources and sinks of carbon dioxide.

OCO-2 is a NASA Earth System Science Pathfinder Program mission managed by JPL for NASA’s Science Mission Directorate in Washington. Orbital Sciences Corporation in Dulles, Virginia, built the spacecraft bus and provides mission operations under JPL’s leadership. The science instrument was built by JPL, based on the instrument design co-developed for the original OCO mission by Hamilton Sundstrand in Pomona, California. NASA’s Launch Services Program at NASA’s Kennedy Space Center in Florida is responsible for launch management. JPL is managed for NASA by the California Institute of Technology in Pasadena.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph

NASA begins engine test project for space launch system rocket

NASA photograph RS-25 rocket engine No. 0525 is positioned onto the A-1 Test Stand at NASAís Stennis Space Center in Mississippi preparation for a series of developmental tests. Engineers have taken a crucial step in preparing...
 
 

SSL selected to study asteroid retrieval for NASA

Space Systems/Loral, a leading provider of commercial satellites, announced July 18 that it was one of the companies selected by NASA to study system concepts and key technologies for NASA’s Asteroid Redirect Mission, which is expected to be a key part of the agency’s path to sending humans to Mars. SSL will conduct two studies;...
 
 
NASA image

NASA turns over next-gen air traffic management tool to FAA

NASA image As seen in this image, Terminal Sequencing and Spacing technology enables air traffic controllers to better manage the spacing between aircraft as they save both time and fuel and reducing emissions, flying more effi...
 

 
Image courtesy of NASA/JPL-Caltech, and SETI Institute

NASA seeks proposals for Europa mission science instruments

Image courtesy of NASA/JPL-Caltech, and SETI Institute Compiled from NASAís Galileo spacecraft data, this colorized surface image of Europa shows the blue-white terrains which indicate relatively pure water ice. Scientists are...
 
 

NASA announces early career faculty space tech research grants

NASA has selected seven university-led proposals for the study of innovative, early stage technologies that address high priority needs for America’s space program. The selected proposals for unique, disruptive, or transformational space technologies will address challenges in robotic mobility when traversing extreme terrain, in developing lightweight and multifunctional materials and str...
 
 
NASA photograph

NASA Armstrong recalls first moon landing, preps for ‘next giant leap’

NASA photograph In this 1967 NASA Flight Research Center photograph the Lunar Landing Research Vehicle (LLRV) No. 2 is viewed from the front. This photograph provides a good view of the pilot’s platform with the restricti...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>