Tech

June 18, 2014

Experimental HiMAT aircraft has new home at NASA Armstrong

The HiMAT subscale research aircraft, seen here during a research flight in December 1980, demonstrated advanced fighter technologies that have been used in the development of many modern high performance military aircraft.

From mid-1979 to January 1983, two remotely piloted, experimental Highly Maneuverable Aircraft Technology) aircraft were flown at NASA’s Dryden Flight Research Center ñ now the Armstrong Flight Research Center – at Edwards Air Force Base, Calif., to develop high-performance fighter technologies that would be applied to later aircraft.

The sub-scale HiMAT aircraft were about half the size of an F-16 and had nearly twice the fighter’s turning capability.

Now, one of the two HiMAT vehicles occupies a place of honor in a newly landscaped courtyard in front of the center’s Integrated Support Facility, the structure that houses the center’s visitor center and gift shop, cafeteria, auditorium and security offices. Mounted on its skid-type landing gear on three concrete supports, the freshly refurbished research aircraft appears ready to jump back into flight ñ if only someone would start its long-gone engine.

HiMAT experiments provided information on integrated, computerized controls; design features such as aeroelastic tailoring, close-coupled canards and winglets; the application of new composite materials; a digital integrated propulsion control system and the interaction of these then-new technologies with one another.

Appearing as if it were ready to take to the air again after a lapse of more than 31 years, NASA’s HiMAT sub-scale remotely operated research aircraft now graces the newly landscaped courtyard in front the Integrated Support Facility at NASA’s Armstrong Flight Research Center.

The HiMAT plane’s rear-mounted swept wings, digital flight control system, and forward controllable canard made the plane’s turn radius twice as tight as that of conventional fighter planes. At near the speed of sound and at an altitude of 25,000 feet, the HiMAT vehicle could sustain an 8-G turn, producing acceleration equal to eight times that of gravity. By comparison, at the same altitude, an F-16’s maximum sustained turning capability at the same altitude and airspeed is about 4.5 Gs.

HiMAT research at NASA Dryden was conducted jointly by NASA and the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. Because the planes were controlled from a ground station, experimental technologies and high-risk maneuverability tests could be employed without endangering pilots. The aircraft were flown 26 times during the program’s 3Ω-year history.

NASA’s Ames Research Center, Moffett Field, Calif., and NASA Dryden partnered with the contractor, Rockwell International’s North American Aircraft division, in the design of the HiMAT aircraft.

NASA research test pilot Bill Dana controls the remotely operated HiMAT sub-scale research aircraft from a ground control station during a 1979 flight.

The HiMAT aircraft were 23.5 feet long and had a wingspan of just less than 16 feet. They were powered by a General Electric J-85-21 turbojet, which produced 5,000 pounds of static thrust at sea level. At launch from the center’s now-retired NB-52B mothership, the HiMAT planes weighed 4,030 pounds including 660 pounds of fuel. They had a top speed of Mach 1.4 — 1.4 times the speed of sound. About 30 percent of the materials used to construct the aircraft were experimental composites, mainly fiberglass and graphite-epoxy.

The other HiMAT aircraft is on display in the “Beyond the Limits” gallery at the National Air and Space Museum on the Capitol Mall in Washington, D.C.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines March 27, 2015

News General Dynamics withdraws as T-100 prime contractor General Dynamics Information Systems and Technology has withdrawn itself as the prime contractor on the T-100, the offering for the T-X trainer replacement program based on the Alenia Aermacchi M-346 design.   Business SpaceX’s fight with U.S. Air Force called a clash of perceptions Billionaire Elon Musk’s...
 
 

News Briefs March 27, 2015

Contractor extradited from Iraq pleads guilty in bribes case A man extradited from Iraq in a military contract bribery case has pleaded guilty to three charges in an agreement with federal prosecutors. U.S. District Judge Thomas Rose has scheduled sentencing for July 1 for Metin Atilan. His attorney, Nick Gounaris, says the two sides agreed...
 
 

Ninth Boeing GPS IIF reaches orbit, sends first signals

Boeing Global Positioning System (GPS) IIF satellites are steadily replenishing the orbiting constellation, continuing to improve reliability and accuracy for users around the world. The ninth GPS IIF reached orbit about three hours, 20 minutes after launching today aboard a United Launch Alliance (ULA) Delta IV rocket from Cape Canaveral Air Force Station, Fla., and...
 

 

F-35 Lightning II costs drop, report shows

A recent account of F-35 Lightning II aircraft program costs shows decreases, the Air Force’s F-35 program executive officer told reporters in a media roundtable March 24, 2015. Lt. Gen. Christopher C. Bogdan, citing this year’s selected acquisition report on the aircraft, called the roundtable to clarify cost and performance facts. He also acknowledged the...
 
 
NG-growler2

Northrop Grumman delivers center/aft ‘shipset’ for first international EA-18G Growler

Northrop Grumman photograph Northrop Grumman mechanics perform final quality inspections on the center/aft fuselage shipset produced by the company for the first Australian EA-18G Growler. The subassembly will be delivered to B...
 
 
Navy photograph by Monica McCoy

Navy conducts production acceptance test of Tomahawk missile

Navy photograph by Monica McCoy Members of the Explosive Ordnance Disposal Technology Division team at Naval Surface Warfare Center, Indian Head prepare a Tomahawk missile for a functional ground test at the Large Motor Test Fa...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>