Tech

June 18, 2014

Experimental HiMAT aircraft has new home at NASA Armstrong

The HiMAT subscale research aircraft, seen here during a research flight in December 1980, demonstrated advanced fighter technologies that have been used in the development of many modern high performance military aircraft.

From mid-1979 to January 1983, two remotely piloted, experimental Highly Maneuverable Aircraft Technology) aircraft were flown at NASA’s Dryden Flight Research Center ñ now the Armstrong Flight Research Center – at Edwards Air Force Base, Calif., to develop high-performance fighter technologies that would be applied to later aircraft.

The sub-scale HiMAT aircraft were about half the size of an F-16 and had nearly twice the fighter’s turning capability.

Now, one of the two HiMAT vehicles occupies a place of honor in a newly landscaped courtyard in front of the center’s Integrated Support Facility, the structure that houses the center’s visitor center and gift shop, cafeteria, auditorium and security offices. Mounted on its skid-type landing gear on three concrete supports, the freshly refurbished research aircraft appears ready to jump back into flight ñ if only someone would start its long-gone engine.

HiMAT experiments provided information on integrated, computerized controls; design features such as aeroelastic tailoring, close-coupled canards and winglets; the application of new composite materials; a digital integrated propulsion control system and the interaction of these then-new technologies with one another.

Appearing as if it were ready to take to the air again after a lapse of more than 31 years, NASA’s HiMAT sub-scale remotely operated research aircraft now graces the newly landscaped courtyard in front the Integrated Support Facility at NASA’s Armstrong Flight Research Center.

The HiMAT plane’s rear-mounted swept wings, digital flight control system, and forward controllable canard made the plane’s turn radius twice as tight as that of conventional fighter planes. At near the speed of sound and at an altitude of 25,000 feet, the HiMAT vehicle could sustain an 8-G turn, producing acceleration equal to eight times that of gravity. By comparison, at the same altitude, an F-16′s maximum sustained turning capability at the same altitude and airspeed is about 4.5 Gs.

HiMAT research at NASA Dryden was conducted jointly by NASA and the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. Because the planes were controlled from a ground station, experimental technologies and high-risk maneuverability tests could be employed without endangering pilots. The aircraft were flown 26 times during the program’s 3Ω-year history.

NASA’s Ames Research Center, Moffett Field, Calif., and NASA Dryden partnered with the contractor, Rockwell International’s North American Aircraft division, in the design of the HiMAT aircraft.

NASA research test pilot Bill Dana controls the remotely operated HiMAT sub-scale research aircraft from a ground control station during a 1979 flight.

The HiMAT aircraft were 23.5 feet long and had a wingspan of just less than 16 feet. They were powered by a General Electric J-85-21 turbojet, which produced 5,000 pounds of static thrust at sea level. At launch from the center’s now-retired NB-52B mothership, the HiMAT planes weighed 4,030 pounds including 660 pounds of fuel. They had a top speed of Mach 1.4 — 1.4 times the speed of sound. About 30 percent of the materials used to construct the aircraft were experimental composites, mainly fiberglass and graphite-epoxy.

The other HiMAT aircraft is on display in the “Beyond the Limits” gallery at the National Air and Space Museum on the Capitol Mall in Washington, D.C.




All of this week's top headlines to your email every Friday.


 
 

 
nasa-flying-lab

NASA’s flying laboratories study our world

Throughout the remainder of 2014, NASA is flying a series of airborne research campaigns from the North Pole to the South Pole and many points in between ñ to take a closer look at U.S. air quality, hurricanes in the Atlantic ...
 
 

NASA selects proposals to increase STEM education at community, technical colleges

NASA’s Office of Education will award more than $17.3 million through the National Space Grant and Fellowship Program to increase student and faculty engagement in science, technology, engineering and mathematics at community colleges and technical schools across the United States. Each award has a two-year performance period and a maximum value of $500,000. The 35...
 
 
Courtesy photograph

Space technology experiments tested in microgravity flight

Courtesy photograph University of Central Florida students and their principal investigator observe their experiment as it reacts to the microgravity environment on NASA’s C-9 reduced-gravity experiments aircraft. NASA...
 

 
NASA photograph by Tom Tschida

Seeing double: Experimental glider, rocket undergo fit checks

NASA photograph by Tom Tschida NASA intern Erik Rossi De La Fuente (upper left) admires the one-third scale, twin-fuselage sailplane concept demonstrator that will carry and launch the Whittinghill Aerospace Mini Sprite rocket....
 
 
Image courtesy of NASA/JPL/Corby Waste

NASA selects U.S. small business technology transfer projects for further development

Image courtesy of NASA/JPL/Corby Waste An artist’s rendition of the 2007 Phoenix Mars probe during landing depicts dust particles stirred up from thrusters. CFD Research Corporation, in conjunction with the University of ...
 
 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>