Tech

June 18, 2014

Experimental HiMAT aircraft has new home at NASA Armstrong

The HiMAT subscale research aircraft, seen here during a research flight in December 1980, demonstrated advanced fighter technologies that have been used in the development of many modern high performance military aircraft.

From mid-1979 to January 1983, two remotely piloted, experimental Highly Maneuverable Aircraft Technology) aircraft were flown at NASA’s Dryden Flight Research Center ñ now the Armstrong Flight Research Center – at Edwards Air Force Base, Calif., to develop high-performance fighter technologies that would be applied to later aircraft.

The sub-scale HiMAT aircraft were about half the size of an F-16 and had nearly twice the fighter’s turning capability.

Now, one of the two HiMAT vehicles occupies a place of honor in a newly landscaped courtyard in front of the center’s Integrated Support Facility, the structure that houses the center’s visitor center and gift shop, cafeteria, auditorium and security offices. Mounted on its skid-type landing gear on three concrete supports, the freshly refurbished research aircraft appears ready to jump back into flight ñ if only someone would start its long-gone engine.

HiMAT experiments provided information on integrated, computerized controls; design features such as aeroelastic tailoring, close-coupled canards and winglets; the application of new composite materials; a digital integrated propulsion control system and the interaction of these then-new technologies with one another.

Appearing as if it were ready to take to the air again after a lapse of more than 31 years, NASA’s HiMAT sub-scale remotely operated research aircraft now graces the newly landscaped courtyard in front the Integrated Support Facility at NASA’s Armstrong Flight Research Center.

The HiMAT plane’s rear-mounted swept wings, digital flight control system, and forward controllable canard made the plane’s turn radius twice as tight as that of conventional fighter planes. At near the speed of sound and at an altitude of 25,000 feet, the HiMAT vehicle could sustain an 8-G turn, producing acceleration equal to eight times that of gravity. By comparison, at the same altitude, an F-16′s maximum sustained turning capability at the same altitude and airspeed is about 4.5 Gs.

HiMAT research at NASA Dryden was conducted jointly by NASA and the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. Because the planes were controlled from a ground station, experimental technologies and high-risk maneuverability tests could be employed without endangering pilots. The aircraft were flown 26 times during the program’s 3Ω-year history.

NASA’s Ames Research Center, Moffett Field, Calif., and NASA Dryden partnered with the contractor, Rockwell International’s North American Aircraft division, in the design of the HiMAT aircraft.

NASA research test pilot Bill Dana controls the remotely operated HiMAT sub-scale research aircraft from a ground control station during a 1979 flight.

The HiMAT aircraft were 23.5 feet long and had a wingspan of just less than 16 feet. They were powered by a General Electric J-85-21 turbojet, which produced 5,000 pounds of static thrust at sea level. At launch from the center’s now-retired NB-52B mothership, the HiMAT planes weighed 4,030 pounds including 660 pounds of fuel. They had a top speed of Mach 1.4 — 1.4 times the speed of sound. About 30 percent of the materials used to construct the aircraft were experimental composites, mainly fiberglass and graphite-epoxy.

The other HiMAT aircraft is on display in the “Beyond the Limits” gallery at the National Air and Space Museum on the Capitol Mall in Washington, D.C.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 29, 2014

News: U.S. military limits warplanes used for Islamic State bombings - The U.S. is relying mostly on warplanes already positioned in the region for its air war against the Islamic State, as opposed to dispatching a major buildup of aerial forces that happened in previous campaigns.   Business: At DOD, it’s use-it-or-lose-it season - As fiscal 2014...
 
 

News Briefs September 29, 2014

Navy awards ship design grant to UNO The University of New Orleans has received a $210,000 grant from the Navy s Office of Naval Research to test information gathering and analysis techniques intended to improve warship design. The goal for warship designers is to produce a vessel that can be repurposed numerous times throughout its...
 
 
Courtesy photograph

TACP-M ties it all together

Air National Guard photograph by SSgt. Lealan Buehrer Tactical air control party specialists with the 169th Air Support Operations Squadron survey an enemy-controlled landing zone before calling in close-air support Aug. 14, 20...
 

 
Air Force photograph by A1C Thomas Spangler

Nellis aggressor squadron inactivated

Air Force photograph by A1C Thomas Spangler SSgt. Justin White signals to Maj. Sam Joplin to begin taxiing a 65th Aggressor Squadron F-15 Eagle to the runway Sept. 18, 2014, at Nellis Air Force Base Nev. The roles and responsib...
 
 
Army photograph by SSgt. Mary S. Katzenberger

82nd Airborne helps commemorate 70th Anniversary of Operation Market Garden

Army photograph by SSgt. Mary S. Katzenberger A paratrooper assigned to the 82nd Airborne Division, reflects near the grave of a British paratrooper at the Arnhem Oosterbeek War Cemetery, Sept. 14, 2014, in the Netherlands. The...
 
 

Raytheon awarded $251 million Tomahawk missile contract

The U.S. Navy has awarded Raytheon a $251 million contract to procure Tomahawk Block IV tactical cruise missiles for fiscal year 2014 with an option for 2015. The contract calls for Raytheon to build and deliver Tomahawk Block IV cruise missiles to the U.S. Navy and U.K. Royal Navy. Raytheon will also conduct flight tests...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>