Tech

June 18, 2014

Experimental HiMAT aircraft has new home at NASA Armstrong

The HiMAT subscale research aircraft, seen here during a research flight in December 1980, demonstrated advanced fighter technologies that have been used in the development of many modern high performance military aircraft.

From mid-1979 to January 1983, two remotely piloted, experimental Highly Maneuverable Aircraft Technology) aircraft were flown at NASA’s Dryden Flight Research Center ñ now the Armstrong Flight Research Center – at Edwards Air Force Base, Calif., to develop high-performance fighter technologies that would be applied to later aircraft.

The sub-scale HiMAT aircraft were about half the size of an F-16 and had nearly twice the fighter’s turning capability.

Now, one of the two HiMAT vehicles occupies a place of honor in a newly landscaped courtyard in front of the center’s Integrated Support Facility, the structure that houses the center’s visitor center and gift shop, cafeteria, auditorium and security offices. Mounted on its skid-type landing gear on three concrete supports, the freshly refurbished research aircraft appears ready to jump back into flight ñ if only someone would start its long-gone engine.

HiMAT experiments provided information on integrated, computerized controls; design features such as aeroelastic tailoring, close-coupled canards and winglets; the application of new composite materials; a digital integrated propulsion control system and the interaction of these then-new technologies with one another.

Appearing as if it were ready to take to the air again after a lapse of more than 31 years, NASA’s HiMAT sub-scale remotely operated research aircraft now graces the newly landscaped courtyard in front the Integrated Support Facility at NASA’s Armstrong Flight Research Center.

The HiMAT plane’s rear-mounted swept wings, digital flight control system, and forward controllable canard made the plane’s turn radius twice as tight as that of conventional fighter planes. At near the speed of sound and at an altitude of 25,000 feet, the HiMAT vehicle could sustain an 8-G turn, producing acceleration equal to eight times that of gravity. By comparison, at the same altitude, an F-16’s maximum sustained turning capability at the same altitude and airspeed is about 4.5 Gs.

HiMAT research at NASA Dryden was conducted jointly by NASA and the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. Because the planes were controlled from a ground station, experimental technologies and high-risk maneuverability tests could be employed without endangering pilots. The aircraft were flown 26 times during the program’s 3Ω-year history.

NASA’s Ames Research Center, Moffett Field, Calif., and NASA Dryden partnered with the contractor, Rockwell International’s North American Aircraft division, in the design of the HiMAT aircraft.

NASA research test pilot Bill Dana controls the remotely operated HiMAT sub-scale research aircraft from a ground control station during a 1979 flight.

The HiMAT aircraft were 23.5 feet long and had a wingspan of just less than 16 feet. They were powered by a General Electric J-85-21 turbojet, which produced 5,000 pounds of static thrust at sea level. At launch from the center’s now-retired NB-52B mothership, the HiMAT planes weighed 4,030 pounds including 660 pounds of fuel. They had a top speed of Mach 1.4 — 1.4 times the speed of sound. About 30 percent of the materials used to construct the aircraft were experimental composites, mainly fiberglass and graphite-epoxy.

The other HiMAT aircraft is on display in the “Beyond the Limits” gallery at the National Air and Space Museum on the Capitol Mall in Washington, D.C.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 31, 2015

News: Carter: Military leaders could arm more troops at home – Following the recent fatal shooting of four Marines and a sailor in Tennessee, Defense Secretary Ash Carter is ordering the military services to consider new policies that would enhance security for troops at home, including potentially arming more personnel.   Business: DOD weighs supplier base,...
 
 

News Briefs July 31, 2015

U.S. delivering eight newer F-16 warplanes to Egypt The United States Embassy in Cairo says the U.S. is delivering eight newer F-16 warplanes to Egypt as part of an ongoing military support package. It says in a July 30 statement that the aircraft, of the current Block 52 production variant, will be flown in from...
 
 
Lockheed Martin photograph

Lockheed Martin successfully tests design changes for Orion spacecraft’s fairing separation system

Lockheed Martin photograph A protective panel for Orion’s service module is jettisoned during testing at Lockheed Martin’s Sunnyvale, California facility. This test series evaluated design changes to the spacecraft’s fair...
 

 

Australian company to provide parts for initial production of Triton UAS

Northrop Grumman has awarded the first Australian supplier contract for the U.S. Navy’s MQ-4C Triton unmanned aircraft system initial production lot to Ferra Engineering. Brisbane-based Ferra Engineering will manufacture mechanical sub-assemblies for the first four Triton air vehicles including structural components. “At Northrop Grumman it’s very important to not only develop...
 
 
Boeing photograph

CH-46 ‘Phrog’ makes its last hop

Boeing photograph The CH-46 Sea Knight helicopter commonly known as the “Phrog,” is set to retire and to be flown one last time by Reserve Marine Medium Helicopter Squadron (HMM) 774 on Aug. 1. The CH-46 Sea Knight is a med...
 
 

Insitu awarded LRIP Lot IV RQ-21A Blackjack Systems contract

Under the terms of its latest contract, Insitu will build six RQ-21A Blackjack systems for the U.S. Navy and Marine Corps. The $78-million Small Tactical Unmanned Aircraft Systems Lot IV Low Rate Initial Production contract is the latest event in the program’s progression toward the Initial Operational Test and Evaluation phase.   “This award will...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>