Tech

June 18, 2014

Experimental HiMAT aircraft has new home at NASA Armstrong

The HiMAT subscale research aircraft, seen here during a research flight in December 1980, demonstrated advanced fighter technologies that have been used in the development of many modern high performance military aircraft.

From mid-1979 to January 1983, two remotely piloted, experimental Highly Maneuverable Aircraft Technology) aircraft were flown at NASA’s Dryden Flight Research Center ñ now the Armstrong Flight Research Center – at Edwards Air Force Base, Calif., to develop high-performance fighter technologies that would be applied to later aircraft.

The sub-scale HiMAT aircraft were about half the size of an F-16 and had nearly twice the fighter’s turning capability.

Now, one of the two HiMAT vehicles occupies a place of honor in a newly landscaped courtyard in front of the center’s Integrated Support Facility, the structure that houses the center’s visitor center and gift shop, cafeteria, auditorium and security offices. Mounted on its skid-type landing gear on three concrete supports, the freshly refurbished research aircraft appears ready to jump back into flight ñ if only someone would start its long-gone engine.

HiMAT experiments provided information on integrated, computerized controls; design features such as aeroelastic tailoring, close-coupled canards and winglets; the application of new composite materials; a digital integrated propulsion control system and the interaction of these then-new technologies with one another.

Appearing as if it were ready to take to the air again after a lapse of more than 31 years, NASA’s HiMAT sub-scale remotely operated research aircraft now graces the newly landscaped courtyard in front the Integrated Support Facility at NASA’s Armstrong Flight Research Center.

The HiMAT plane’s rear-mounted swept wings, digital flight control system, and forward controllable canard made the plane’s turn radius twice as tight as that of conventional fighter planes. At near the speed of sound and at an altitude of 25,000 feet, the HiMAT vehicle could sustain an 8-G turn, producing acceleration equal to eight times that of gravity. By comparison, at the same altitude, an F-16’s maximum sustained turning capability at the same altitude and airspeed is about 4.5 Gs.

HiMAT research at NASA Dryden was conducted jointly by NASA and the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. Because the planes were controlled from a ground station, experimental technologies and high-risk maneuverability tests could be employed without endangering pilots. The aircraft were flown 26 times during the program’s 3Ω-year history.

NASA’s Ames Research Center, Moffett Field, Calif., and NASA Dryden partnered with the contractor, Rockwell International’s North American Aircraft division, in the design of the HiMAT aircraft.

NASA research test pilot Bill Dana controls the remotely operated HiMAT sub-scale research aircraft from a ground control station during a 1979 flight.

The HiMAT aircraft were 23.5 feet long and had a wingspan of just less than 16 feet. They were powered by a General Electric J-85-21 turbojet, which produced 5,000 pounds of static thrust at sea level. At launch from the center’s now-retired NB-52B mothership, the HiMAT planes weighed 4,030 pounds including 660 pounds of fuel. They had a top speed of Mach 1.4 — 1.4 times the speed of sound. About 30 percent of the materials used to construct the aircraft were experimental composites, mainly fiberglass and graphite-epoxy.

The other HiMAT aircraft is on display in the “Beyond the Limits” gallery at the National Air and Space Museum on the Capitol Mall in Washington, D.C.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 26, 2014

News: When Hagel leaves, new SecDef faces big questions about the military’s future - President Obama’s new pick to run the Pentagon will face a dizzying set of challenges affecting the Defense Department’s mission, budget and culture. Who will be the next Secretary of Defense?- Following the Nov. 24 surprise announcement from the White House, the...
 
 

News Briefs November 26, 2014

Navy to decommission two more ships in Puget Sound The Navy recently decommissioned the guided missile frigate USS Ingraham at Everett, Wash. It will be towed to Bremerton and scrapped. The Daily Herald reports the Navy also plans to decommission another ship at the Everett homeport and also one stationed in Bremerton. Naval Station Everett...
 
 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 

 
Air Force photograph by Rick Goodfriend

16T Pitch Boom reactivated to support wind tunnel tests

Air Force photograph by Rick Goodfriend The Pitch Boom at the AEDC 16-foot transonic wind tunnel (16T) was recently reactivated. This model support system is used in conjunction with a roll mechanism to provide a combined pitch...
 
 

Northrop Grumman supports U.S. Air Force Minuteman missile test launch

Northrop Grumman recently supported the successful flight testing of the U.S. Air Force’s Minuteman III intercontinental ballistic missile weapon system. The operational flight test was conducted as part of the Air Force Global Strike Command’s Force Development Evaluation Program. This program demonstrates and supports assessment of the accuracy, availability and reliability of the...
 
 
army-detector

Scientists turn handheld JCAD into a dual-use chemical, explosives detector

Scientists at the U.S. Army Edgewood Chemical Biological Center at Aberdeen Proving Ground, Md., proved it is possible to teach an old dog new tricks by adding the ability to detect explosive materials to the Joint Chemical Age...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>