Defense

June 25, 2014

New aircraft carrier recovery technology moves one step closer to fleet integration

Sailors use a new Compact Swaging Machine (CSM) for the first time to attach an arresting gear wire terminal on the flight deck of the aircraft carrier USS Ronald Reagan (CVN 76). The first operational fleet test of the highly anticipated CSM was successfully completed May 12, when the machine was used to install new terminals on purchase cable arresting wires. The CSM is designed to reduce workload and dramatically increase the quality of life for flight deck sailors.

The new Compact Swaging Machine, responsible for automating a current hazardous process and reducing Sailor workload, successfully completed its first operational fleet test aboard the USS Ronald Reagan (CVN 76) May 12.

The CSM uses hydraulic pressure to mold, or swage, a terminal onto an aircraft carrier purchase cable. This terminal connects to a cross-deck pendant that stretches across the flight deck, which engages the tail hook of a landing aircraft allowing for a smooth, controlled arrestment.

“The CSM automates a process that has been practiced by the fleet since the Navy started using aircraft carrier arresting gear,” said Jim Raevis, CSM team lead.

On the morning of May 9, the prototype CSM that had been placed in an ISO freight container was craned aboard the CVN 76 flight deck. On May 12, four new terminals were successfully swaged onto purchase cables, and within hours of CVN 76 leaving port in San Diego, California, the cables began taking arrestments from manned aircraft.

“Endorsed as the number one priority by the ALRE (Aircraft Launch and Recovery Equipment) community at the last three meetings of the Aviation Boatswain’s Mates Association, the CSM will dramatically increase the quality of life for the Sailor,” said Andrew Sussman, recovery integrated product team lead for the U.S. Navy’s ALRE Program Office (PMA-251).

After each newly-swaged wire has accrued 500 arrestments, or aircraft landings, estimated to happen by late this summer, the cables will then be cropped and shipped to Joint Base McGuire-Dix-Lakehurst in Lakehurst, N.J., where personnel will conduct residual life testing.

“We are going to test the terminals and wires to their point of destruction to discover how much strength remains,” Raevis said. “That’s the type of testing we have conducted every step of this program.”

The current time-intensive process of replacing a terminal requires four to six Sailors and can take up to 12 hours to complete. During this process, zinc is heated to 1,000-degrees Fahrenheit in a small space onboard the ship, and the molten metal is then poured into a socket. Special care is required during this risky process, and the work must be repeated if strict material tolerances are not met.

PMA-251 and industry partner, Creare Engineering Research & Development, while under NAVAIR Small Business Innovation Research contract, designed the advanced hydraulic system.

“The CSM requires only one Sailor and forms the replacement terminal in an hour,” said Cmdr. Tony Hernandez, ALRE fleet liaison officer. “Needless to say, the machine’s capability will leave a lasting impression in naval history.”

“The plan forward is to remove socket pouring across the fleet in total, replacing it with CSMs in each and every ship,” Raevis said, adding that fleet installations are currently planned to begin in 2018.




All of this week's top headlines to your email every Friday.


 
 

 
Air Force photograph by A1C Erin OíShea

U.S. Forces display military might at Farnborough

Air Force photograph by A1C Erin O’Shea Capt. Tom Meyers discusses the F-15E Strike Eagle’s capabilities with spectators July 17, 2014, at the Farnborough International Airshow in England. Public access was granted ...
 
 
raptors4

Raptors, Falcons fuel up in desert skies

Three U.S. Air Force F-22 Raptors assigned to the 325th Fighter Wing, Tyndall Air Force Base, Fla., fly alongside a KC-135 Stratotanker assigned to the 93rd Air Refueling Squadron, Fairchild AFB, Wash., during Red Flag 14-3, Ju...
 
 
Air Force photograph by A1C Thomas Spangler

Sun sets on Red Flag 14-3

Air Force photograph by A1C Thomas Spangler The sun sets behind a row of F-16 Fighting Falcons during Red Flag 14-3, July 16, 2014, at Nellis Air Force Base, Nev. Red Flag provides a series of intense air-to-air combat scenario...
 

 
Air Force photograph by SSgt. Siuta B. Ika

AOC integral to Red Flag 14-3 operations

Air Force photograph by SSgt. Siuta B. Ika Members of the Air and Space Operations Center work during Red Flag 14-3 operations July 22, 2014, at Nellis Air Force Base, Nev. Armed with personnel from intelligence and communicati...
 
 
red-flag1

Red Flag night operations soar into darkness

Singapore air force aircraft maintainers walk down the flightline looking for foreign object debris before night operations begin during Red Flag 14-3, July 16 at Nellis Air Force Base, Nev. Red Flag exercises involve air and g...
 
 
Air Force photo by Ken LaRock

First aviation mechanic display added to the National Museum of the U.S. Air Force

Air Force photo by Ken LaRock A bronze bust honoring the first aviation mechanic, Charles E. Taylor, is now on permanent display in the National Museum of the U.S. Air Force’s Early Years Gallery. The museum is located ne...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>