Space

June 30, 2014

Masten’s Xombie flight tests astrobotic’s autonomous landing system

Masten’s rocket-powered Xombie technology demonstration vehicle rockets skyward during a flight test of Astrobotic Technology’s autonomous landing system.

Astrobotic Technology’s newly developed autonomous landing system was put to the test recently when it controlled Masten Space Systems’ XA-0.1B Xombie suborbital technology demonstration rocket during a NASA-sponsored launch and landing at the Mojave Air and Space Port in Mojave, Calif.

In a June 20 test funded by the Flight Opportunities Program of NASA’s Space Technology Mission Directorate, the vertical-takeoff, vertical-landing Xombie ascended to about 853 feet (260 meters) in 25 seconds. During the boost phase, the Astrobotic Autolanding System (AAS) was activated and it navigated the vehicle to a precise landing location, avoiding sand bags that had been placed as mock hazards. If the AAS had chosen a landing point other than one of the two open pads, Masten software would have overridden the prototype system to land the vehicle safely.

The test objectives included accurately tracking Xombie’s location, detecting hazards larger than 10 inches (25 centimeters) and finding an acceptable landing location. The AAS uses cameras and an inertial measurement unit for navigation, because the Global Positioning System used on Earth would not be available for a landing on another planet or the moon.

“Conceptually, this is like the Apollo missions where the astronauts navigated to a safe landing by looking out the window of the lunar landing module,” explained Kevin Peterson, Astrobotic’s chief technology officer. “In this case, we have an onboard computer instead of an astronaut, and the cameras, inertial measurement unit and software are so precise that they can track the craft’s location to within a few meters.”

In February, Mojave-based Masten and Astrobotic, headquartered in Pitttsburgh, had flown the Xombie in an open-loop test in which the AAS payload was running and collecting data. The open-loop flights followed a pre-set trajectory, but the vehicle did not accept any data or commands from the autonomous landing system.

Engineering intern Nick Robbins and aerospace engineer Tyler Roberson of Masten Space Systems complete installation of Astrobotic’s autonomous landing system atop the Xombie technology demonstration vehicle.

The June 20 flight test was a closed-loop flight where the Astrobotic landing technology sent both data and commands to Xombie, influencing its flight path to avoid hazards and land safely.

“I am very excited by the preliminary results of this test,” said Chris Baker, Flight Opportunities Program campaign manager. “Terrain relative navigation and autonomous hazard avoidance are on the technology road maps for missions to Mars, Europa and elsewhere in the solar system. Two small companies working together have successfully demonstrated technologies that will not only assist them in their future endeavors, but have also been identified as enabling future NASA missions.”

Through NASA’s Flight Opportunities Program, officials have been working with commercial companies, universities and government organizations to coordinate testing of innovative space technologies on research flights through the use of commercial suborbital flight platforms.

Astrobotic Technology’s autonomous landing system is mounted atop Masten Space Systems’ Xombie vehicle prior to launch from the Mojave Air and Space Port.

The Flight Opportunities Program is managed at NASA’s Armstrong Flight Research Center at Edwards, California. NASA’s Ames Research Center at Moffett Field, Calif., manages the solicitation and selection of technologies to be tested and demonstrated on commercial flight vehicles.

NASA’s Space Technology Mission Directorate is innovating, developing, testing, and flying hardware for use in NASA’s future missions. Over the next 18 months, the directorate will make significant new investments that address several high priority challenges for achieving safe and affordable deep-space exploration.

Click here for the YouTube link




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 27, 2015

News: U.S.-Turkey deal aims to create de facto ‘safe zone’ in northwest Syria – Turkey and the United States have agreed on the outlines of a de facto “safe zone” along the Turkey-Syria border under the terms of a deal that is expected to significantly increase the scope and pace of the U.S.-led air war against...
 
 

News Briefs July 27, 2015

Putin OKs maritime code calling for strong Atlantic presence Russian President Vladimir Putin has approved a new version of the country’s maritime doctrine that calls for maintaining a strong Russian presence in the Atlantic Ocean amid concerns about NATO expansion. The doctrine, which covers naval, merchant marine and scientific maritime issues, also adds the Antarctic...
 
 
Army photograph by SFC Walter E. van Ochten

U.S., Ukraine, Romania, Bulgaria train together at Rapid Trident 2015

Army photograph by SFC Walter E. van Ochten U.S. soldiers, of the 3rd Platoon, 615th Military Police Company, 709th Military Police Battalion, react as they conduct reacting to contact training as part of their situational trai...
 

 
nasa-astronaut

Astronaut Stephen Frick retires from NASA

Astronaut Stephen Frick has retired from NASA to accept a position in the private sector. Frick, who flew as both a shuttle pilot and commander, left the Agency July 13. Steve has been a great asset to the astronaut office and ...
 
 
Army photograph by Sgt. Juana M. Nesbitt

Estonian, US forces receive new jump wings

Army photograph by Sgt. Juana M. Nesbitt Pvt. Kalmer Simohov, of Parnu, a volunteer with the Estonian Defense League, receives his U.S. Army Airborne wings following the joint airborne operations exercise at a drop zone in Nurm...
 
 

Lockheed Martin, StemRad studying first-responder radiation shield for potential deep-space application

StemRad, Ltd. and Lockheed Martin have initiated a joint research and development effort to determine if StemRad’s radiation shielding technology ñ originally designed for first-responders ñ could help to keep astronauts safe on deep-space exploration missions. This collaboration is part of Lockheed Martin’s ongoing effort to establish international partnerships for human explorat...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>