Space

June 30, 2014

Masten’s Xombie flight tests astrobotic’s autonomous landing system

Masten’s rocket-powered Xombie technology demonstration vehicle rockets skyward during a flight test of Astrobotic Technology’s autonomous landing system.

Astrobotic Technology’s newly developed autonomous landing system was put to the test recently when it controlled Masten Space Systems’ XA-0.1B Xombie suborbital technology demonstration rocket during a NASA-sponsored launch and landing at the Mojave Air and Space Port in Mojave, Calif.

In a June 20 test funded by the Flight Opportunities Program of NASA’s Space Technology Mission Directorate, the vertical-takeoff, vertical-landing Xombie ascended to about 853 feet (260 meters) in 25 seconds. During the boost phase, the Astrobotic Autolanding System (AAS) was activated and it navigated the vehicle to a precise landing location, avoiding sand bags that had been placed as mock hazards. If the AAS had chosen a landing point other than one of the two open pads, Masten software would have overridden the prototype system to land the vehicle safely.

The test objectives included accurately tracking Xombie’s location, detecting hazards larger than 10 inches (25 centimeters) and finding an acceptable landing location. The AAS uses cameras and an inertial measurement unit for navigation, because the Global Positioning System used on Earth would not be available for a landing on another planet or the moon.

“Conceptually, this is like the Apollo missions where the astronauts navigated to a safe landing by looking out the window of the lunar landing module,” explained Kevin Peterson, Astrobotic’s chief technology officer. “In this case, we have an onboard computer instead of an astronaut, and the cameras, inertial measurement unit and software are so precise that they can track the craft’s location to within a few meters.”

In February, Mojave-based Masten and Astrobotic, headquartered in Pitttsburgh, had flown the Xombie in an open-loop test in which the AAS payload was running and collecting data. The open-loop flights followed a pre-set trajectory, but the vehicle did not accept any data or commands from the autonomous landing system.

Engineering intern Nick Robbins and aerospace engineer Tyler Roberson of Masten Space Systems complete installation of Astrobotic’s autonomous landing system atop the Xombie technology demonstration vehicle.

The June 20 flight test was a closed-loop flight where the Astrobotic landing technology sent both data and commands to Xombie, influencing its flight path to avoid hazards and land safely.

“I am very excited by the preliminary results of this test,” said Chris Baker, Flight Opportunities Program campaign manager. “Terrain relative navigation and autonomous hazard avoidance are on the technology road maps for missions to Mars, Europa and elsewhere in the solar system. Two small companies working together have successfully demonstrated technologies that will not only assist them in their future endeavors, but have also been identified as enabling future NASA missions.”

Through NASA’s Flight Opportunities Program, officials have been working with commercial companies, universities and government organizations to coordinate testing of innovative space technologies on research flights through the use of commercial suborbital flight platforms.

Astrobotic Technology’s autonomous landing system is mounted atop Masten Space Systems’ Xombie vehicle prior to launch from the Mojave Air and Space Port.

The Flight Opportunities Program is managed at NASA’s Armstrong Flight Research Center at Edwards, California. NASA’s Ames Research Center at Moffett Field, Calif., manages the solicitation and selection of technologies to be tested and demonstrated on commercial flight vehicles.

NASA’s Space Technology Mission Directorate is innovating, developing, testing, and flying hardware for use in NASA’s future missions. Over the next 18 months, the directorate will make significant new investments that address several high priority challenges for achieving safe and affordable deep-space exploration.

Click here for the YouTube link




All of this week's top headlines to your email every Friday.


 
 

 

Headlines October 22, 2014

News: Northrop challenges 3DELRR contract award - Northrop Grumman has formally issued a protest against the US Air Force’s decision to award its next-generation ground based radar to competitor Raytheon.   Business: Defense firms prefer GOP, but spread campaign cash between political parties - For every campaign contribution from a major arms manufacturer to a Republican candidate...
 
 

News Briefs October 22, 2014

Military converges on scene of Kansas jet crash Military personnel are investigating at the site in southeast Kansas where an Oklahoma Air National Guard fighter jet crashed after a midair collision with another one during a training exercise. The F-16 crashed Oct. 20 in a pasture about three miles northeast of Moline, an Elk County...
 
 
Courtesy photograph

Upgrades ‘new normal’ for armor in uncertain budget environment

Courtesy photograph The current Paladin is severely under-powered and overweight so its speed of cross-country mobility is pretty restricted. The Paladin Integrated Management program is designed to address a number of these we...
 

 

ISR: A critical capability for 21st century warfare

The progressive adaptations and breakthroughs made in the intelligence, surveillance and reconnaissance arena have changed the way wars are fought, and the way commanders think about the battlespace. “Whether we have airmen exploiting full motion video data or serving downrange in the (Central Command) area of responsibility, these individuals make up an enterprise of 30,000...
 
 

Lockheed Martin teams with Roketsan of Turkey on new standoff missile for F-35

Roketsan and Lockheed Martin signed a teaming agreement Oct. 22 for collaboration on the SOM-J, a new generation air-to-surface Standoff Cruise Missile for the F-35 Lightning II. The SOM system is an autonomous, long-range, low-observable, all-weather, precision air-to-surface cruise missile. The SOM-J variant is tailored for internal carriage on the F-35 aircraft. The companies will...
 
 

Army Operating Concept expands definition of combined arms

The Army Operating Concept, published Oct. 7, expands the idea of joint combined-arms operations to include intergovernmental and special operations capabilities, said Gen. Herbert R. McMaster Jr. The new concept includes prevention and shaping operations at the strategic level across domains that include maritime, air, space and cyberspace, he said. It’s a “shift in emphasis,”...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>