Space

July 16, 2014

NASA turns over next-gen air traffic management tool to FAA

As seen in this image, Terminal Sequencing and Spacing technology enables air traffic controllers to better manage the spacing between aircraft as they save both time and fuel and reducing emissions, flying more efficient approaches into airports.

A new NASA-developed computer software tool designed to aid air traffic controllers was presented to the Federal Aviation Administration during a ceremony July 14 at the agency’s headquarters in Washington.

The Terminal Sequencing and Spacing technology will enable air traffic controllers to better manage the spacing between aircraft as they fly more efficient approaches into airports, saving both time and fuel and reducing emissions. TSS is the another step in NASA’s support of the development of a Next Generation Air Transportation System, or NextGen, which is a joint multi-agency and industry initiative to modernize and upgrade the nation’s air traffic control system.

“With TSS, NASA’s aeronautics innovators have delivered to the FAA another valuable tool that will soon benefit our environment, our economy and every individual traveler,” said Jaiwon Shin, NASA’s associate administrator for aeronautics research.

The software enables the routine use of what are called Performance Based Navigation procedures, resulting in fewer course and altitude changes, while also reducing the frequency of necessary communications between controllers and pilots.

The TSS tool provides information to controllers about the speeds they should assign to aircraft as they follow fuel-efficient, continuous-descent arrival procedures while passing through a region of airspace surrounding an airport called the TRACON (Terminal Radar Approach Control), covering a distance from an airport of about 50 miles.

NASA’s Airspace Systems Program, which is part of the agency’s Aeronautics Research Mission Directorate, began the research that led to the development of TSS in 2009, with prototype development beginning in 2011. NASA used these prototypes to test TSS in 16 high-fidelity simulations involving controllers and pilots.

The FAA is working to implement the tool in the next five years, targeting an initial operating capability around 2018. The initial site has not yet been determined and implementation will depend on funding availability.

Through a highly effective technology transfer process enabled by the NASA/FAA Research Transition Teams, NASA has delivered to the FAA three other key software tools that enable more efficient air traffic and fuel savings.




All of this week's top headlines to your email every Friday.


 
 

 

Year in space starts for one American, one Russian

Three crew members representing the United States and Russia are on their way to the International Space Station after launching from the Baikonur Cosmodrome in Kazakhstan at 3:42 p.m., EDT, March 27. NASA astronaut Scott Kelly and Russian Federal Space Agency (Roscosmos) cosmonaut Mikhail Kornienko will spend about a year living and working aboard the...
 
 
NASA photograph

Orion parachute testing conducted at AEDC NFAC facility

AEDC engineers were part of a test team that performed wind tunnel testing on the parachutes for NASA Orion spacecraft in January. The test team also consisted of NASA, Airborne Systems, Jacobs Engineering and NFAC personnel. P...
 
 

Ninth Boeing GPS IIF reaches orbit, sends first signals

Boeing Global Positioning System (GPS) IIF satellites are steadily replenishing the orbiting constellation, continuing to improve reliability and accuracy for users around the world. The ninth GPS IIF reached orbit about three hours, 20 minutes after launching today aboard a United Launch Alliance (ULA) Delta IV rocket from Cape Canaveral Air Force Station, Fla., and...
 

 
NASA/JPL-Caltech photograph

NASA asteroid hunter spacecraft data available to public

NASA/JPL-Caltech photograph The NEOWISE spacecraft viewed comet C/2014 Q2 (Lovejoy) for a second time on January 30, 2015, as the comet passed through the closest point to our sun along its 14,000-year orbit, at a solar distanc...
 
 
NASA and ESA image

NASA’s Hubble, Chandra find clues that may help identify dark matter

NASA and ESA image Here are images of six different galaxy clusters taken with NASA’s Hubble Space Telescope (blue) and Chandra X-ray Observatory (pink) in a study of how dark matter in clusters of galaxies behaves when t...
 
 
SOFIA

SOFIA finds missing link between supernovae, planet formation

NASA/CXO/Herschel/VLA/Lau et al SOFIA data reveal warm dust (white) surviving inside a supernova remnant. The SNR Sgr A East cloud is traced in X-rays (blue). Radio emission (red) shows expanding shock waves colliding with surr...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>