Defense

July 21, 2014

Chow from a 3-D printer? Natick researchers are working on it

Tags:
Jane Benson
Natick, Mass.

Natick food technologists already believe they serve up the best food science can offer. Now they are working to incorporate 3-D printing technology into foods for the war fighter.

Army researchers are investigating ways to incorporate 3-D printing technology into producing food for soldiers.

The U.S. Army Natick Soldier Research, Development and Engineering Center’s, or NSRDEC’s, Lauren Oleksyk is a food technologist investigating 3-D applications for food processing and product development. She leads a research team within the Combat Feeding Directorate, referred to as CFD.

“The mission of CFD’s Food Processing, Engineering and Technology team is to advance novel food technologies,” Oleksyk said. “The technologies may or may not originate at NSRDEC, but we will advance them as needed to make them suitable for military field feeding needs. We will do what we can to make them suitable for both military and commercial applications.”

On a recent visit to the nearby the Massachusetts Institute of Technology’s Lincoln Laboratory, NSRDEC food technologist Mary Scerra met with experts to discuss the feasibility and applications of using 3-D printing to produce innovative military rations.

“It could reduce costs because it could eventually be used to print food on demand,” Scerra said. “For example, you would like a sandwich, where I would like ravioli. You would print what you want and eliminate wasted food.”

“Printing of food is definitely a burgeoning science,” Oleksyk said. “It’s currently being done with limited application. People are 3-D printing food. In the confectionery industry, they are printing candies and chocolates. Some companies are actually considering 3-D printing meat or meat alternatives based on plant products that contain the protein found in meat.”

A printer is connected to software that allows a design to be built in layers. To print a candy bar, there are cartridges filled with ingredients that will be deposited layer upon layer. The printer switches the cartridges as needed as the layers build.

“This is being done already,” Oleksyk said. “This is happening now.”

“It is revolutionary to bring 3-D printing into the food engineering arena,” Oleksyk said. “To see in just a couple of years how quickly it is advancing, I think it is just going to keep getting bigger and bigger in terms of its application potential.”

Oleksyk believes her team is the first to investigate how 3-D printing of food could be used to meet Soldiers’ needs. The technology could be applied to the battlefield for meals on demand, or for food manufacturing, where food could be 3-D printed and perhaps processed further to become shelf stable. Then, these foods could be included in rations.

“We have a three-year shelf-life requirement for the MRE [Meal Ready-to-Eat],” Oleksyk said. “We’re interested in maybe printing food that is tailored to a Soldier’s nutritional needs and then applying another novel process to render it shelf stable, if needed.”

Oleksyk said they are looking at ultrasonic agglomeration, which produces compact, small snack-type items. Combining 3-D printing with this process could yield a nutrient-dense, shelf-stable product.

“Another potential application may be 3-D printing a pizza, baking it, packaging it and putting it in a ration,” she said.

Currently, most 3-D printed foods consist of a paste that comes out of a printer and is formed into predetermined shapes. The shapes are eaten as is or cooked.

Army food technologists hope to further develop 3-D printing technologies to create nutrient-rich foods that can be consumed in a war fighter-specific environment, on or near the battlefield.

Nutritional requirements could be sent to a 3-D food printer so meals can be printed with the proper amount of vitamins and minerals, thus meeting the individual dietary needs of the war fighter.

“If you are lacking in a nutrient, you could add that nutrient. If you were lacking protein, you could add meat to a pizza,” Oleksyk said.

Scerra said individual needs could be addressed based on the operational environment.

“Say you were on a difficult mission and you expended different nutrients … a printer could print according to what your needs were at that time,” Scerra said.

In the future, making something from scratch may have a completely different meaning.

“We are thinking as troops move forward, we could provide a process or a compact printer that would allow soldiers to print food on demand using ingredients that are provided to them, or even that they could forage for,” Oleksyk said. “This is looking far into the future.”

Oleksyk, who was skeptical when she first heard that 3-D printers could be used to engineer food, now marvels at the possibilities.

“I’ve been here long enough to see some of these ‘no ways’ become a reality. Anything is possible,” Oleksyk said.




All of this week's top headlines to your email every Friday.


 
 

 

News Briefs February 27, 2015

Ukraine will start pulling back heavy weapons in the east Ukraine’s military says it will start pulling back its heavy weapons from the front line with Russian-backed separatists as required under a cease-fire agreement. The Defense Ministry said in a statement Feb. 26 that it reserved the right to revise its withdrawal plans in the...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>