Business

July 30, 2014

Engineers developing safer, more accurate tracer round

Tags:
Audra Calloway
Picatinny Arsenal, N.J.

Tracer rounds enable the shooter to follow the projectile trajectory to make aiming corrections. However, the light emitted by these rounds also gives away the position of the shooter. Engineers at Picatinny Arsenal are part of a joint effort to develop a new type of tracer that reduces the visible signature of tracer rounds.

Engineers at Picatinny Arsenal are researching a way to develop a new type of tracer round that not only would perform its function during the day as well as night, but also improve shooter accuracy and keep soldiers safer by reducing their visual signature.

Tracer rounds, which are usually loaded as every fifth round in machine gun belts, provide essential information to soldiers firing at an enemy target by creating a line-of-sight that allows them to track the trajectory of their bullets and adjust their aim.

However, the pyrotechnic streak they emit also gives away the shooter’s location by allowing the enemy to follow the line of pyrotechnic back to the shooter.

The One-Way Luminescence, or OWL, tracer round being developed by engineers at the Armament Research, Development and Engineering Center, known as ARDEC, will give only those at the shooter location the ability to see where the round is headed without revealing their position. This will keep soldiers safer because their location will not be observable to the enemy.

Current tracer projectiles have a longer jacket, in comparison to their ball projectile counterparts, in order to incorporate a cavity that is packed with pyrotechnics. As the bullet flies through the air, the pyrotechnics burn and emit a flame from the back of the round, which allows the enemy to see the shooter’s position.

“OWL is a technology approach that doesn’t allow an enemy target to trace back to who is firing rounds at him, even if the target is using night vision goggles,” said Christel Seitel, Quality Assurance Lead for the OWL program.

 

The photo shows the differences in shape and size between the 7.62mm legacy tracer, legacy M80 ball, and M80A1 rounds.

Development challenges

ARDEC engineers are experimenting with a variety of potential solutions. With one of the OWL technology concepts, “we’re just putting a thin layer of material on the back of the ball round. So, instead of burning pyrotechnics, our luminescence is like a glow-in-the-dark sticker. You excite it with specific wavelengths of light. “

“The ultimate goal is to replace the tracer rounds with the OWL rounds and, potentially, put OWL on the back of every ball round,” Seitel said.

A ball round is a standard general purpose round, which was developed to be lethal. ARDEC scientists are currently exploring options to achieve this, looking at different coatings and materials to find a solution that satisfies the Army’s requirement to be both a day and night tracer.

“Finding something that burns brighter than the sun is difficult,” Seitel said of the technology development goal. “You want to have something that’s bright enough to give you that contrast [with the background].”

Because little to no material is ejected from an OWL projectile, finding a technology that meets or exceeds the light output of a current pyrotechnic tracer is extremely challenging.

“Because we don’t completely know what path we’re taking, we’re looking at all our options and we will hopefully down select in a few years.”

In addition to the in-house design effort, multiple contracts have been awarded in fiscal year 2014 using the Defense Ordnance Technology Consortium process to seek competitive prototype designs from industry.

 

A cut-away view of the current tracer round, which burns pyrotechnics to produce a streak of light.

Heightened accuracy

A final OWL design is anticipated to be down selected in fiscal year 2017, and transition to an Engineering and Manufacturing Development program at that time. Current pyrotechnic trace rounds lose mass as the pyrotechnics burn, so they don’t completely mimic the trajectory of the ball rounds, which don’t lose mass.

Since it is anticipated that OWL will be applied to all ball rounds, effectively making ball rounds trace without the need of a cavity, they will all have the same trajectory. And since the shooter can see the exact trajectory of where their round is heading, they can quickly make adjustments to get on target faster.

 

Safer to manufacture

The OWL also has the potential for safer manufacturing.

Because many of the OWL concepts will not contain pyrotechnic material, it will also be safer and less sensitive to handle in a production environment. However, there are a few OWL concepts that contain limited amounts of energetic material to try and overcome the sun’s light output.

Tracer rounds ricochet off of a tank as security police fire a mounted .50-caliber machine gun.

“Currently, the pyrotechnics have a separate wing in manufacturing plants due to safety concerns. But if you can just make your bullets and then paste something on the back, you won’t have the costs of special handling.”

OWL is a joint effort by ARDEC, the Program Executive Office for Ammunition, the Joint Service Small Arms Program Office, Army Corps of Engineers, Army Research Laboratory, Naval Research Laboratory and Night Vision Laboratory.

PM-MAS, which is also part of the joint effort, has supported ARDEC in obtaining science and technology funding, and plans to transition OWL to a formal acquisition program in fiscal year 2015.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines March 30, 2015

News: Pentagon chief mulls easing military enlistment standards - Defense Secretary Ash Carter is considering easing some military enlistment standards as part of a broader set of initiatives to better attract and keep quality service members and civilians across the Defense Department.   Business: Lockheed pays $2 million to settle government overbilling charges - Lockheed Martin Corpor...
 
 

News Briefs March 30, 2015

Landing mishap for military chopper; two aboard unhurt Two Navy officers were unhurt after their helicopter rolled on its side while landing in the Florida Panhandle. The mishap happened the night of March 27 at a Navy landing site in Pensacola, Fla. The Pensacola News Journal reports a pilot instructor and a student were able...
 
 
Air Force photograph by TSgt. Matt Hecht

Laser-based aircraft countermeasure provides ‘unlimited rounds’ against MANPADS

Air Force photograph by TSgt. Matt Hecht A U.S. Army AH-64 Apache attack helicopter prepares to depart Bagram Air Field, Afghanistan, on Jan 7, 2012. The Apache conducts distributed operations, precision strikes against relocat...
 

 

Navy, Air Force advocate for modernizing combat aviation

Top Navy and Air Force officials today told the House Armed Services subcommittee on tactical air and land forces the president’s budget request for fiscal year 2016 will support modernizing combat aviation programs. Cavy Vice Adm. Paul A. Grosklags, principal military deputy to the assistant secretary of the Navy for research, development and acquisitions; Air...
 
 

Raytheon wins $46 million contract for South Korean Global Hawk ground stations

Raytheon has been awarded a contract valued at up to $45.7 million by Northrop Grumman Aerospace Systems for ground segments in support of four Global Hawk unmanned aircraft systems recently purchased by the Republic of Korea. Under this contract, Raytheon will deliver one building-based and one mobile ground segment to locations in South Korea. Work...
 
 
Air Force photograph by SrA. Victor J. Caputo

McConnell community marks B-29 rollout

Air Force photograph by SrA. Victor J. Caputo A B-29 Superfortress aircraft, named Doc after its nose art, sit on the flightline March 23, 2015, in Wichita, Kan. Doc will be one of two Superfortresses in the world capable of fl...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>