Business

August 20, 2014

Robots moving robots: Lockheed Martin conducts first fully autonomous mission

A K-MAX unmanned helicopter delivers an SMSS unmanned ground vehicle during a fully autonomous mission demonstration at Fort Benning, Ga. A safety pilot was on board K-MAX but did not operate the controls at any time.

Lockheed Martin, in collaboration with the U.S. Army Tank Automotive Research, Development and Engineering Center, successfully conducted a fully autonomous resupply, reconnaissance, surveillance and target-acquisition demonstration using its Squad Mission Support System unmanned ground vehicle, K-MAX unmanned helicopter and Gyrocam optical sensor.

During the “Extending the Reach of the Warfighter through Robotics” capability assessment at Fort Benning, Ga., K-MAX delivered SMSS by sling load to conduct an autonomous resupply mission scenario for Soldiers defending a village. At mission completion, SMSS proceeded to an observation point where it raised its Gyrocam sensor and began scanning the area for enemy forces. In an actual mission, upon observation of enemy forces, the remote operator would notify the commander on the ground, who would assess the threat and determine the appropriate method of neutralizing it.

“Fully autonomous capabilities as we’ve just demonstrated will allow service members to focus on important missions and remain out of harm’s way,” said Scott Greene, vice president of Ground Vehicles for Lockheed Martin Missiles and Fire Control. “This successful demonstration with both unmanned air and ground vehicles shows us that these missions are not only possible, but can be available much sooner than you would expect.”

“The synergistic use of unmanned air and ground vehicles will give warfighters a larger operational reach, and allow execution of missions that are currently performed at great risk to the warfighter,” said Dr. Paul Rogers, TARDEC director.

In 2011, K-MAX became the first unmanned aircraft system to deliver cargo in-theater for the U.S. Marine Corps. As troops were frequent targets of improvised explosive devices and insurgent attacks, K-MAX answered the call to reduce the number of truck resupply convoys and their troop escorts to protect Soldiers on the ground.

Manufactured by Kaman Aerospace Corporation and outfitted with its mission package of systems and sensors, the heavy-lifting K-MAX unmanned system is a transformational technology that can lift 6,000 pounds of cargo at sea level. Capable of flying delivery missions day and night, K-MAX can reach remote locations without risking a life.

“This demonstration signifies another use for robots and this brings us closer to the pinnacle of how we use unmanned systems,” said Dan Spoor, vice president of Aviation and Unmanned Systems at Lockheed Martin’s Mission Systems and Training business. “There is significant potential for these types of systems for humanitarian aid, the civilian oil and gas industry, firefighting and for other military applications.”

During the test, the Gyrocam 9-inch, mid-wave surveillance sensor provided constant video surveillance during each phase of the mission, including while in flight. The elevated system scanned for threats and provided geo-location coordinates of hostile personnel for indirect-fire missions.

Both SMSS and K-MAX were equipped with mobile Satellite Communications (SATCOM) systems as well as local line-of-sight communications systems.  A remote operations center equipped with SATCOM controlled and monitored the vehicles’ activities throughout the demonstration.

Click here to watch on YouTube




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 17, 2014

News: U.S. Air Force tanker platform slated for year-end debut - Boeing is planning for first flight of its 767-2C – upon which the U.S. Air Force’s new KC-46 tanker will be based – by year’s end, six months late. Northrop Grumman wins $657.4 million deal to supply drones to South Korea - Northrop Grumman has won...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 

 
Coast Guard photograph

Navy demonstrates unmanned helicopter operations aboard Coast Guard cutter

http://static.dvidshub.net/media/video/1412/DOD_102145893/DOD_102145893-512×288-442k.mp4 Coast Guard photograph An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>