Space & Technology

September 22, 2017
 

HIAD heat shield material feels burn during arc jet testing

Small cutouts of the Flexible Thermal Protection System for NASA’s Hypersonic Inflatable Aerodynamic Decelerator, or HIAD, were exposed to temperatures up to approximately 2,700 F during testing at Boeing’s Large Core Arc Tunnel in St. Louis, Mo.

NASA heat shield material that could one day be used on an inflatable aeroshell during atmospheric entry on Mars recently underwent testing at Boeing’s Large Core Arc Tunnel in St. Louis, Mo.

The inflatable aeroshell, using high temperature advanced flexible material systems, will enable atmospheric entry to planetary bodies and the landing of heavy payloads.

The Hypersonic Inflatable Aerodynamic Decelerator project is focused on development of the inflatable aeroshell technology and manufacturing capability at large scale, to support an orbital atmospheric entry flight experiment at Earth and Mars. HIAD overcomes size and weight limitations of current rigid systems by utilizing inflatable soft-goods materials that can be packed into a small volume and deployed to form a large aeroshell before atmospheric entry.

Critical to the development of the technology is development of flexible material systems whose performance must be verified through arc jet testing. During early August testing, small cutouts of the Flexible Thermal Protection System (F-TPS), about 2.5 inches in diameter and anywhere from a half-inch to 1 inch thick, were placed in a supersonic wind tunnel and blasted with jets of superheated plasma gas. The plasma gas hit the cutouts at speeds of Mach 4 or more, and heated the surfaces to temperatures up to approximately 2,700 F. Thermocouples embedded in the samples measured the material’s response to the superheated conditions.

Members of NASA Langley’s HIAD team are seen here with models of the inflatable aeroshell, which will enable atmospheric entry to planetary bodies and the landing of heavy payloads.

Researchers calibrated tunnel pressure and temperature to be similar to the range of conditions HIADs would face during atmospheric entry on Earth and Mars. The data from these tests will be used to validate mathematical models used for design.

The test team included researchers Steven Tobin, Matt Wells and Andrew Brune of NASA’s Langley Research Center in Hampton, Va.; and Grant Rossman, a Ph.D. candidate at the Georgia Institute of Technology in Atlanta.

HIAD technology is being developed by researchers at Langley through NASA’s Game Changing Development program, which is part of the agency’s Space Technology Mission Directorate. The program advances space technologies that may lead to entirely new approaches to space missions.

For more information about GCD, visit http://gameon.nasa.gov.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines – December 12, 2018

News Family, friends remember Marines killed in KC-130J crash off Japan coast – The five missing Marines who were aboard the KC-130J tanker plane that collided midair with an F/A-18 fighter off the coast of Japan last week ranged from young corporals early in their service to a veteran pilot, who was the executive officer...
 
 

News Briefs – December 12, 2018

Kosovo: Prime minister says new army will serve world peace The prime minister of Kosovo says the army the country expects to have soon will be a modest contributor to creating world peace. Kosovo’s lawmaker’s are set to vote Dec, 14 on three laws that would transform the national security force into a regular army....
 
 
Army photograph

SM-3 Block IIA successfully intercepts IRBM target during operational test

The Missile Defense Agency and U.S. Navy Sailors manning the Aegis Ashore Missile Defense Test Complex at the Pacific Missile Range Facility at Kauai, Hawaii, successfully conducted Flight Test Integrated-03. This was an operat...